Stochastik-Kombinatorik-Auswahl ohne Beachtung der Reihenfolge - Kombination


  • $\left( \begin{array}{c} n \hfill \\ k \hfill \\\end{array} \right)$
    1 2 3 4 5 6 7 8 9 10
    $\left( \begin{array}{c} n +k-1 \\ k \end{array} \right) $
    1 2 3 4 5

Beispiel Nr: 03
$ x=\left( \begin{array}{c} n +k-1 \\ k \end{array} \right) = \frac{(n+k-1)!}{(n-1)!\cdot k!}\\\\ \\ \left( \begin{array}{c} n +k-1 \\ k \end{array} \right) \\ \textbf{Gegeben:} \\ x=\left( \begin{array}{c} 10 +5-1 \\ k \end{array} \right) = \frac{(10+5-1)!}{(10-1)!\cdot 5!}\\\\x=\#x\\ \\ \textbf{Rechnung:} \\x=\left( \begin{array}{c} 10 +5-1 \\ k \end{array} \right) = \frac{(10+5-1)!}{(10-1)!\cdot 5!}\\\\x=2\cdot 10^{3}\\\\$