Geometrie-Kreis-Kreissektor (Grad)


  • $A = \frac{r^{2} \cdot \pi \cdot \alpha }{ 360}$
    1 2 3 4 5 6 7 8
    $r = \sqrt{\frac{A\cdot 360}{\alpha \cdot \pi }}$
    1 2 3 4 5 6
    $\alpha = \frac{A\cdot 360}{r^{2} \cdot \pi }$
    1 2 3 4 5 6
    $b = \frac{2\cdot r\cdot \pi \cdot \alpha }{ 360}$
    1 2 3 4
    $r = \frac{b\cdot 360}{\alpha \cdot \pi \cdot 2}$
    1 2 3 4
    $\alpha = \frac{b\cdot 360}{r\cdot \pi \cdot 2}$
    1 2 3 4

Beispiel Nr: 04
$ \text{Gegeben:}\\\text{Kreiszahl} \qquad \pi \qquad [] \\ \text{Radius} \qquad r \qquad [m] \\ \text{Winkel} \qquad \alpha \qquad [^{\circ}] \\ \\ \text{Gesucht:} \\\text{Kreisbogen} \qquad b \qquad [m] \\ \\ b = \frac{2\cdot r\cdot \pi \cdot \alpha }{ 360}\\ \textbf{Gegeben:} \\ \pi=3\frac{16}{113} \qquad r=4m \qquad \alpha=60^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\ b = \frac{2\cdot r\cdot \pi \cdot \alpha }{ 360} \\ \pi=3\frac{16}{113}\\ r=4m\\ \alpha=60^{\circ}\\ b = \frac{2\cdot 4m\cdot 3\frac{16}{113} \cdot 60^{\circ} }{ 360}\\\\b=4,19m \\\\ \small \begin{array}{|l|} \hline r=\\ \hline 4 m \\ \hline 40 dm \\ \hline 400 cm \\ \hline 4\cdot 10^{3} mm \\ \hline 4\cdot 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline alpha=\\ \hline 60 ° \\ \hline 3,6\cdot 10^{3} \text{'} \\ \hline 2,16\cdot 10^{5} \text{''} \\ \hline 66\frac{2}{3} gon \\ \hline 1,05 rad \\ \hline \end{array} \small \begin{array}{|l|} \hline b=\\ \hline 4,19 m \\ \hline 41,9 dm \\ \hline 419 cm \\ \hline 4,19\cdot 10^{3} mm \\ \hline 4188790\frac{4}{15} \mu m \\ \hline \end{array}$