Geometrie-Viereck-Parallelogramm

Beispiel Nr: 05
$\text{Gegeben:}\\\text{Fläche} \qquad A \qquad [m^{2}] \\ \text{Höhe} \qquad h \qquad [m] \\ \\ \text{Gesucht:} \\\text{Grundlinie} \qquad g \qquad [m] \\ \\ g = \frac{A}{h}\\ \textbf{Gegeben:} \\ A=\frac{1}{3}m^{2} \qquad h=\frac{3}{4}m \qquad \\ \\ \textbf{Rechnung:} \\ g = \frac{A}{h} \\ A=\frac{1}{3}m^{2}\\ h=\frac{3}{4}m\\ g = \frac{\frac{1}{3}m^{2}}{\frac{3}{4}m}\\\\g=\frac{4}{9}m \\\\\\ \small \begin{array}{|l|} \hline A=\\ \hline \frac{1}{3} m^2 \\ \hline 33\frac{1}{3} dm^2 \\ \hline 3333\frac{1}{3} cm^2 \\ \hline 333333\frac{1}{3} mm^2 \\ \hline 0,00333 a \\ \hline 3,33\cdot 10^{-5} ha \\ \hline \end{array} \small \begin{array}{|l|} \hline h=\\ \hline \frac{3}{4} m \\ \hline 7\frac{1}{2} dm \\ \hline 75 cm \\ \hline 750 mm \\ \hline 7,5\cdot 10^{5} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline g=\\ \hline \frac{4}{9} m \\ \hline 4\frac{4}{9} dm \\ \hline 44\frac{4}{9} cm \\ \hline 444\frac{4}{9} mm \\ \hline 444444\frac{4}{9} \mu m \\ \hline \end{array}$