Geometrie-Viereck-Raute

Beispiel Nr: 09
$\text{Gegeben:}\\\text{Diagonale f} \qquad f \qquad [m] \\ \text{Diagonale e} \qquad e \qquad [m] \\ \\ \text{Gesucht:} \\\text{Fläche} \qquad A \qquad [m^{2}] \\ \\ A = \frac{1}{2}\cdot e\cdot f\\ \textbf{Gegeben:} \\ f=\frac{1}{3}m \qquad e=1m \qquad \\ \\ \textbf{Rechnung:} \\ A = \frac{1}{2}\cdot e\cdot f \\ f=\frac{1}{3}m\\ e=1m\\ A = \frac{1}{2}\cdot 1m\cdot \frac{1}{3}m \\\\ A=\frac{1}{6}m^{2} \\\\\\ \small \begin{array}{|l|} \hline f=\\ \hline \frac{1}{3} m \\ \hline 3\frac{1}{3} dm \\ \hline 33\frac{1}{3} cm \\ \hline 333\frac{1}{3} mm \\ \hline 333333\frac{1}{3} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline e=\\ \hline 1 m \\ \hline 10 dm \\ \hline 100 cm \\ \hline 10^{3} mm \\ \hline 10^{6} \mu m \\ \hline \end{array} \small \begin{array}{|l|} \hline A=\\ \hline \frac{1}{6} m^2 \\ \hline 16\frac{2}{3} dm^2 \\ \hline 1666\frac{2}{3} cm^2 \\ \hline 166666\frac{2}{3} mm^2 \\ \hline 0,00167 a \\ \hline 1,67\cdot 10^{-5} ha \\ \hline \end{array}$