Geometrie-Trigonometrie-Umrechnungen

• $sin^{2} \alpha + cos^{2} \alpha = 1$
$sin \alpha = \sqrt{1 - cos^{2} \alpha }$
1 2 3 4 5
$cos \alpha = \sqrt{1 - sin^{2} \alpha }$
1 2 3 4 5
$tan \alpha = \frac{sin \alpha }{cos \alpha }$
1 2 3 4 5 6
$sin \alpha = tan\alpha \cdot cos \alpha$
1 2 3 4
$cos \alpha = \frac{sin \alpha }{tan \alpha }$
1 2 3 4

Beispiel Nr: 05
$\text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\ \\ \text{Gesucht:} \\\text{Sinus alpha} \qquad sin \alpha \qquad [] \\ \\ sin \alpha = \sqrt{1 - cos^{2} \alpha }\\ \textbf{Gegeben:} \\ \alpha=120^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\ sin \alpha = \sqrt{1 - cos^{2} \alpha } \\ \alpha=120^{\circ}\\ sin 120^{\circ} = \sqrt{1 - cos^{2} 120^{\circ} }\\\\sin \alpha=0,866 \\\\\\ \small \begin{array}{|l|} \hline alpha=\\ \hline 120 ° \\ \hline 7,2\cdot 10^{3} \text{'} \\ \hline 4,32\cdot 10^{5} \text{''} \\ \hline 133\frac{1}{3} gon \\ \hline 2,09 rad \\ \hline \end{array} \small \begin{array}{|l|} \hline sinalpha=\\ \hline 0,866 rad \\ \hline 866 mrad \\ \hline 49,6 ^\circ \\ \hline 2,98\cdot 10^{3} \text{'} \\ \hline 1,79\cdot 10^{5} \text{'''} \\ \hline \end{array}$