Beispiel Nr: 05
$ \text{Gegeben:} \\ \text{Vektoren: } \vec{A} =\left( \begin{array}{c} a_1 \\ a_2 \\ a_3 \\ \end{array} \right) \quad \vec{B} =\left( \begin{array}{c} b_1 \\ b_2 \\ b_3 \\ \end{array} \right) \\ \\ \text{Gesucht:} \\ \text{Länge der Vektoren:} \\ \text{Fläche des Parallelogramms} \\ \text{Vektorprodukt} \\ \text{Skalarprodukt} \\ \text{Lineare Abhängigkeit von 2 Vektoren}\\ \\ \\ \textbf{Gegeben:} \\ \text{Vektor: } \vec{A} =\left( \begin{array}{c} 8 \\ 5 \\ 9 \\ \end{array} \right) \quad \vec{B} =\left( \begin{array}{c} 9 \\ 0 \\ 2 \\ \end{array} \right) \\ \\ \\ \textbf{Rechnung:} \\ \text{Vektoren: } \vec{a} =\left( \begin{array}{c} 8 \\ 5 \\ 9 \\ \end{array} \right) \quad \vec{b} =\left( \begin{array}{c} 9 \\ 0 \\ 2 \\ \end{array} \right) \\ \bullet \text{Länge der Vektoren:} \\ \left|\vec{a}\right| =\sqrt{a_1^2+a_2^2+a_3^2} \\ \left|\vec{a}\right| =\sqrt{8^2+5^2+9^2} \\ \left|\vec{a}\right| =13 \\ \left|\vec{b}\right| =\sqrt{b_1^2+b_2^2+b_3^2} \\ \left|\vec{b}\right| =\sqrt{9^2+0^2+2^2} \\ \quad \left|\vec{b}\right| =9,22 \\ \bullet \text{Skalarprodukt:} \\ \vec{a} \circ \vec{b}=8 \cdot 9 + 5 \cdot 0 +9 \cdot 2 = 90 \\ \bullet \text{Vektorprodukt:} \\ \vec{a} \times \vec{b}= \left( \begin{array}{c} 5 \cdot2-9\cdot0 \\ 9\cdot9-2\cdot8 \\ 8\cdot0-5\cdot9 \\ \end{array} \right) \\ \vec{c} = \vec{a} \times \vec{b}= \left( \begin{array}{c} 10 \\ 65 \\ -45 \\ \end{array} \right) \\ \bullet \text{Fläche des Parallelogramms} \\ \left|\vec{c}\right| =\sqrt{10^2+65^2+\left(-45\right)^2} \\ \left|\vec{c}\right| =79,7 \\ \bullet \text{Schnittwinkel:} \\ \cos \alpha= \displaystyle\frac{ \vec{a} \circ \vec{b}}{ \left|\vec{a}\right| \cdot \left|\vec{b}\right|}\\ \cos \alpha= \left|\displaystyle\frac{90}{13 \cdot 9,22} \right| \\ \cos \alpha= \left| 0,749 \right| \\ \alpha=41,5 \\ \bullet \text{Lineare Abhängigkeit von 2 Vektoren}\\ \left( \begin{array}{c} 8 \\ 5 \\ 9 \\ \end{array} \right) =k \cdot \left( \begin{array}{c} 9 \\ 0 \\ 2 \\ \end{array} \right) \\ \begin{array}{cccc} 8&=&9 k & \quad /:9 \quad \Rightarrow k=\frac{8}{9} \\ 5&=&0 k & \quad /:0 \quad \Rightarrow k=∞ \\ 9&=&2 k & \quad /:2 \quad \Rightarrow k=4\frac{1}{2} \\ \end{array} \\ \\ \Rightarrow \text{Vektoren sind linear unabhängig - nicht parallel} \\ $