Beispiel Nr: 06
$ \text{Gegeben:} \\ \text{Vektoren: } \vec{A} =\left( \begin{array}{c} a_1 \\ a_2 \\ a_3 \\ \end{array} \right) \quad \vec{B} =\left( \begin{array}{c} b_1 \\ b_2 \\ b_3 \\ \end{array} \right) \\ \\ \text{Gesucht:} \\ \text{Länge der Vektoren:} \\ \text{Fläche des Parallelogramms} \\ \text{Vektorprodukt} \\ \text{Skalarprodukt} \\ \text{Lineare Abhängigkeit von 2 Vektoren}\\ \\ \\ \textbf{Gegeben:} \\ \text{Vektor: } \vec{A} =\left( \begin{array}{c} 2 \\ 6 \\ 6 \\ \end{array} \right) \quad \vec{B} =\left( \begin{array}{c} 8 \\ 0 \\ 1 \\ \end{array} \right) \\ \\ \\ \textbf{Rechnung:} \\ \text{Vektoren: } \vec{a} =\left( \begin{array}{c} 2 \\ 6 \\ 6 \\ \end{array} \right) \quad \vec{b} =\left( \begin{array}{c} 8 \\ 0 \\ 1 \\ \end{array} \right) \\ \bullet \text{Länge der Vektoren:} \\ \left|\vec{a}\right| =\sqrt{a_1^2+a_2^2+a_3^2} \\ \left|\vec{a}\right| =\sqrt{2^2+6^2+6^2} \\ \left|\vec{a}\right| =8,72 \\ \left|\vec{b}\right| =\sqrt{b_1^2+b_2^2+b_3^2} \\ \left|\vec{b}\right| =\sqrt{8^2+0^2+1^2} \\ \quad \left|\vec{b}\right| =8,06 \\ \bullet \text{Skalarprodukt:} \\ \vec{a} \circ \vec{b}=2 \cdot 8 + 6 \cdot 0 +6 \cdot 1 = 22 \\ \bullet \text{Vektorprodukt:} \\ \vec{a} \times \vec{b}= \left( \begin{array}{c} 6 \cdot1-6\cdot0 \\ 6\cdot8-1\cdot2 \\ 2\cdot0-6\cdot8 \\ \end{array} \right) \\ \vec{c} = \vec{a} \times \vec{b}= \left( \begin{array}{c} 6 \\ 46 \\ -48 \\ \end{array} \right) \\ \bullet \text{Fläche des Parallelogramms} \\ \left|\vec{c}\right| =\sqrt{6^2+46^2+\left(-48\right)^2} \\ \left|\vec{c}\right| =66,8 \\ \bullet \text{Schnittwinkel:} \\ \cos \alpha= \displaystyle\frac{ \vec{a} \circ \vec{b}}{ \left|\vec{a}\right| \cdot \left|\vec{b}\right|}\\ \cos \alpha= \left|\displaystyle\frac{22}{8,72 \cdot 8,06} \right| \\ \cos \alpha= \left| 0,313 \right| \\ \alpha=71,8 \\ \bullet \text{Lineare Abhängigkeit von 2 Vektoren}\\ \left( \begin{array}{c} 2 \\ 6 \\ 6 \\ \end{array} \right) =k \cdot \left( \begin{array}{c} 8 \\ 0 \\ 1 \\ \end{array} \right) \\ \begin{array}{cccc} 2&=&8 k & \quad /:8 \quad \Rightarrow k=\frac{1}{4} \\ 6&=&0 k & \quad /:0 \quad \Rightarrow k=∞ \\ 6&=&1 k & \quad /:1 \quad \Rightarrow k=6 \\ \end{array} \\ \\ \Rightarrow \text{Vektoren sind linear unabhängig - nicht parallel} \\ $