Beispiel Nr: 03
$ \text{Gegeben:} \text{Punkte:} A(a_1/a_2/a_3) \quad B(b_1/b_2/b_3) \\ \\ \text{Gesucht:} \text{Vektor zwischen 2 Punkten} \\ \text{Länge des Vektors - Abstand zwischen zwei Punkten - Mittelpunkt einer Strecke} \\ \\ \\ \textbf{Gegeben:} \\ \text{Punkte: }A(2/3/45) \quad B(5/6/7) \\ \\ \\ \textbf{Rechnung:} \\ \text{Punkte: }A(2/3/45) \quad B(5/6/7) \\ \bullet \text{Vektor zwischen zwei Punkten} \\ \vec{AB} =\left( \begin{array}{c} 5-2 \\ 6-3 \\ 7-45 \\ \end{array} \right) = \left( \begin{array}{c} 3 \\ 3 \\ -38 \\ \end{array} \right) \\ \bullet \text{Abstand von 2 Punkten (Betrag des Vektors)} \\ \left|\vec{AB}\right| =\sqrt{c_1^2+c_2^2+c_3^2} \\ \left|\vec{AB}\right| =\sqrt{3^2+3^2+\left(-38\right)^2} \\ \left|\vec{AB}\right| =\sqrt{1,46\cdot 10^{3}} \\ \left|\vec{AB}\right| =38,2 \\ \bullet \text{Mittelpunkt der Strecke AB} \\ \vec{M}=\frac{1}{2}\left( \vec{A}+ \vec{B} \right) \\ \vec{M}=\frac{1}{2}\left( \left(\begin{array}{c} 2 \\ 3 \\ 45 \\ \end{array} \right)+ \left( \begin{array}{c} 5 \\ 6 \\ 7 \\ \end{array}\right) \right) \\ \vec{M}= \left( \begin{array}{c} 3\frac{1}{2} \\ 4\frac{1}{2} \\ 26 \\ \end{array} \right)\\ M(3\frac{1}{2}/4\frac{1}{2}/26) $