Beispiel Nr: 05
$ \text{Gegeben:} \text{Punkte:} A(a_1/a_2/a_3) \quad B(b_1/b_2/b_3) \\ \\ \text{Gesucht:} \text{Vektor zwischen 2 Punkten} \\ \text{Länge des Vektors - Abstand zwischen zwei Punkten - Mittelpunkt einer Strecke} \\ \\ \\ \textbf{Gegeben:} \\ \text{Punkte: }A(-1/2/5) \quad B(-4/5/4) \\ \\ \\ \textbf{Rechnung:} \\ \text{Punkte: }A(-1/2/5) \quad B(-4/5/4) \\ \bullet \text{Vektor zwischen zwei Punkten} \\ \vec{AB} =\left( \begin{array}{c} -4+1 \\ 5-2 \\ 4-5 \\ \end{array} \right) = \left( \begin{array}{c} -3 \\ 3 \\ -1 \\ \end{array} \right) \\ \bullet \text{Abstand von 2 Punkten (Betrag des Vektors)} \\ \left|\vec{AB}\right| =\sqrt{c_1^2+c_2^2+c_3^2} \\ \left|\vec{AB}\right| =\sqrt{\left(-3\right)^2+3^2+\left(-1\right)^2} \\ \left|\vec{AB}\right| =\sqrt{19} \\ \left|\vec{AB}\right| =4,36 \\ \bullet \text{Mittelpunkt der Strecke AB} \\ \vec{M}=\frac{1}{2}\left( \vec{A}+ \vec{B} \right) \\ \vec{M}=\frac{1}{2}\left( \left(\begin{array}{c} -1 \\ 2 \\ 5 \\ \end{array} \right)+ \left( \begin{array}{c} -4 \\ 5 \\ 4 \\ \end{array}\right) \right) \\ \vec{M}= \left( \begin{array}{c} -2\frac{1}{2} \\ 3\frac{1}{2} \\ 4\frac{1}{2} \\ \end{array} \right)\\ M(-2\frac{1}{2}/3\frac{1}{2}/4\frac{1}{2}) $