Beispiel Nr: 08
$ \text{Gegeben:} \text{Punkte:} A(a_1/a_2/a_3) \quad B(b_1/b_2/b_3) \\ \\ \text{Gesucht:} \text{Vektor zwischen 2 Punkten} \\ \text{Länge des Vektors - Abstand zwischen zwei Punkten - Mittelpunkt einer Strecke} \\ \\ \\ \textbf{Gegeben:} \\ \text{Punkte: }A(-2/2/1) \quad B(2/-1/5) \\ \\ \\ \textbf{Rechnung:} \\ \text{Punkte: }A(-2/2/1) \quad B(2/-1/5) \\ \bullet \text{Vektor zwischen zwei Punkten} \\ \vec{AB} =\left( \begin{array}{c} 2+2 \\ -1-2 \\ 5-1 \\ \end{array} \right) = \left( \begin{array}{c} 4 \\ -3 \\ 4 \\ \end{array} \right) \\ \bullet \text{Abstand von 2 Punkten (Betrag des Vektors)} \\ \left|\vec{AB}\right| =\sqrt{c_1^2+c_2^2+c_3^2} \\ \left|\vec{AB}\right| =\sqrt{4^2+\left(-3\right)^2+4^2} \\ \left|\vec{AB}\right| =\sqrt{41} \\ \left|\vec{AB}\right| =6,4 \\ \bullet \text{Mittelpunkt der Strecke AB} \\ \vec{M}=\frac{1}{2}\left( \vec{A}+ \vec{B} \right) \\ \vec{M}=\frac{1}{2}\left( \left(\begin{array}{c} -2 \\ 2 \\ 1 \\ \end{array} \right)+ \left( \begin{array}{c} 2 \\ -1 \\ 5 \\ \end{array}\right) \right) \\ \vec{M}= \left( \begin{array}{c} 0 \\ \frac{1}{2} \\ 3 \\ \end{array} \right)\\ M(0/\frac{1}{2}/3) $