Beispiel Nr: 23
$ \text{Gegeben:}\\ \text{Seite-Seite-Seite (SSS): }a-b-c \\ \text{Seite-Winkel-Seite (SWS): } a-b-\gamma , a-c-\beta , b-c-\alpha \\ \text{Seite-Seite-Winkel(SsW): }a-b-\alpha ,a-b-\beta , a-c-\alpha, a-c-\gamma, b-c-\beta, b-c-\gamma \\ \text{Winkel-Winkel-Seite (WWS,WSW): } c-\beta-\gamma,a-\alpha-\beta ,a-\alpha-\gamma,a-\beta-\gamma,b-\alpha-\beta ,b-\alpha-\gamma,b-\beta-\gamma,c-\alpha-\beta ,c-\alpha-\gamma \\ \text{Gesucht:} \\ \text{- alle Winkel und alle Seiten} \\ \text{- Fläche } \\ \text{- Umfang} \\ \text{- Höhen,Seitenhalbierende,Winkelhalbierende} \\ \text{- Inn- und Umkreisradius} \\ \text{Eingabe:} \\ \text{Nur drei Eingaben können ungleich Null sein.} \\ \text{Ausgabe der Grafik nur im PDF-Format.}\\ \\ \\ \textbf{Gegeben:} \\ c=5 \qquad \alpha=35 \qquad \gamma=90 \qquad \\ \\ \textbf{Rechnung:} \\\text{Winkel-Winkel-Seite}\\ c=5\quad \gamma=90^\circ\quad \alpha=35^\circ\\ \\ \text{Winkelsumme: } \alpha + \beta + \gamma =180^\circ\\ \alpha+ \beta + \gamma =180 \qquad /-\alpha \qquad /-\gamma \\ \beta =180^\circ -\alpha - \gamma \\ \beta =180^\circ -35^\circ - 90^\circ \\ \beta =55^\circ \\ \text{Sinus: }\quad \sin\alpha= \displaystyle \frac{a}{c} \\ \sin\alpha= \displaystyle \frac{a}{c} \quad / \cdot c\ a= c \cdot \sin\alpha \\ a= 5 \cdot \sin35 \\ a=2,87 \\ \text{Pythagoras: } c^2=a^2+b^2 \quad /-a^2\\ b^2=c^2-a^2 \\ b=\sqrt{c^2-a^2} \\ b=\sqrt{5^2-2,87^2}\\ b=4,1 \\ \text{Umfang: } U=a+b+c \\ U=2,87+4,1+5 \\ U=12 \\ \text{Höhe: } h_a \\ \sin\beta= \displaystyle \frac{h_a}{c} \\ \sin\beta= \displaystyle \frac{h_a}{c} \quad /\cdot c\\ h_a =c \cdot \sin\beta \\ h_a =5 \cdot \sin55^\circ \\ h_a=4,1 \\ \text{Flaeche: } \quad A = \frac{1}{2}\cdot a \cdot h_a \\ A = \frac{1}{2}\cdot 2,87 \cdot 4,1 \\ A=5,87 \\ \text{Höhe: } h_b \\ \sin\gamma= \displaystyle \frac{h_b}{a} \\ \sin\gamma= \displaystyle \frac{h_b}{a} \quad /\cdot a\\ h_b =a \cdot \sin\gamma \\ h_b =2,87 \cdot \sin90^\circ \\ h_b=2,87 \\ \text{Höhe: } h_c \\ \sin\alpha= \displaystyle \frac{h_c}{b} \\ \sin\alpha= \displaystyle \frac{h_c}{b} \quad / \cdot b\\ h_c=b \cdot \sin\alpha \\ h_c=4,1 \cdot \sin35^\circ \\ h_c=2,35 \\ \text{Winkelhalbierende: }\alpha \\ \delta=180-\beta-\frac{\alpha}{2} \\ \text{Sinus-Satz:} \displaystyle \frac{wha}{\sin\beta}=\frac{c}{\sin\delta } \\ \displaystyle \frac{wha}{\sin \beta}=\frac{c}{\sin\delta }\qquad /\cdot \sin\beta \\ wha=\displaystyle\frac{c \cdot \sin\beta}{ \sin\delta } \\ wha =\displaystyle\frac{5\cdot \sin55 }{ \sin107\frac{1}{2}} \\ wha=4,29 \\ \text{Winkelhalbierende: }\beta \\ \delta=180-\frac{\beta}{2}-\gamma \\ \text{Sinus-Satz:} \displaystyle \frac{whb}{\sin\gamma}=\frac{a}{\sin\delta } \\ \displaystyle \frac{whb}{\sin \gamma}=\frac{a}{\sin\delta }\qquad /\cdot \sin\gamma \\ whb=\displaystyle\frac{a \cdot \sin\gamma}{ \sin\delta } \\ whb =\displaystyle\frac{2,87\cdot \sin90 }{ \sin62\frac{1}{2}} \\ whb=3,23 \\ \text{Winkelhalbierende: }\gamma \\ \delta=180-\alpha-\frac{\gamma}{2} \\ \text{Sinus-Satz:} \displaystyle \frac{whc}{\sin\alpha}=\frac{b}{\sin\delta } \\ \displaystyle \frac{whc}{\sin \alpha}=\frac{b}{\sin\delta }\qquad /\cdot \sin\alpha \\ whc=\displaystyle\frac{b \cdot \sin\alpha}{ \sin\delta } \\ whc =\displaystyle\frac{4,1\cdot \sin35 }{ \sin107\frac{1}{2}} \\ whc=1,72 \\ \text{Seitenhalbierende: } \\ s_a=\frac{1}{2}\sqrt{2(b^2+c^2)-a^2} \\ s_a=\frac{1}{2}\sqrt{2(4,1^2+5^2)-2,87^2} \\ s_a=4,34 \\ \text{Seitenhalbierende: } s_b=\frac{1}{2}\sqrt{2(a^2+c^2)-b^2}\\ s_b=\frac{1}{2}\sqrt{2(2,87^2+5^2)-4,1^2}\\ s_b=3,52 \\ \text{Seitenhalbierende: } s_c=\frac{1}{2}\sqrt{2(a^2+b^2)-c^2}\\ s_c=\frac{1}{2}\sqrt{2(2,87^2+4,1^2)-5^2}\\ s_c=2,88 \\ \text{Umkreisradius: } 2\cdot r_u= \displaystyle \frac{a}{\sin\alpha} \\ r_u =\displaystyle\frac{a}{2\cdot\sin\alpha} \\ r_u =\displaystyle\frac{2,87}{2\cdot\sin35^\circ} \\ r_u=2\frac{1}{2} \\ \text{Inkreisradius: }r_i= \displaystyle \frac{2 \cdot A}{U} \\ r_i= \displaystyle \frac{2 \cdot 5,87}{12} \\ r_i=0,982 \\$