Beispiel Nr: 34
$ \text{Gegeben:}\\ \text{Seite-Seite-Seite (SSS): }a-b-c \\ \text{Seite-Winkel-Seite (SWS): } a-b-\gamma , a-c-\beta , b-c-\alpha \\ \text{Seite-Seite-Winkel(SsW): }a-b-\alpha ,a-b-\beta , a-c-\alpha, a-c-\gamma, b-c-\beta, b-c-\gamma \\ \text{Winkel-Winkel-Seite (WWS,WSW): } c-\beta-\gamma,a-\alpha-\beta ,a-\alpha-\gamma,a-\beta-\gamma,b-\alpha-\beta ,b-\alpha-\gamma,b-\beta-\gamma,c-\alpha-\beta ,c-\alpha-\gamma \\ \text{Gesucht:} \\ \text{- alle Winkel und alle Seiten} \\ \text{- Fläche } \\ \text{- Umfang} \\ \text{- Höhen,Seitenhalbierende,Winkelhalbierende} \\ \text{- Inn- und Umkreisradius} \\ \text{Eingabe:} \\ \text{Nur drei Eingaben können ungleich Null sein.} \\ \text{Ausgabe der Grafik nur im PDF-Format.}\\ \\ \\ \textbf{Gegeben:} \\ a=6 \qquad b=5 \qquad \gamma=25 \qquad \\ \\ \textbf{Rechnung:} \\\text{Seite-Winkel-Seite}\\ a=6\quad b=5\quad \gamma=25^\circ \\ \\ \text{Kosinus-Satz: } c^2=a^2+b^2-2\cdot a \cdot b \cdot \cos\gamma \\ c^2=a^2+b^2-2\cdot a \cdot b \cdot \cos\gamma \\ c=\sqrt{a^2+b^2-2\cdot a \cdot b \cdot \cos\gamma} \\ c=\sqrt{6^2+5^2-2\cdot 6 \cdot 5 \cdot \cos25^\circ} \\ c=2,57 \\ \text{Umfang: } U=a+b+c \\ U=6+5+2,57 \\ U=13,6 \\ \text{Kosinus-Satz: } a^2=b^2+c^2-2\cdot b \cdot c \cdot \cos\alpha \\ a^2=b^2+c^2-2\cdot b \cdot c \cdot \cos\alpha \qquad /-a^2 \qquad /+2\cdot b \cdot c \cdot \cos\alpha \\ 2\cdot b \cdot c \cdot \cos\alpha = b^2+c^2 -a^2 \qquad /:( 2\cdot b \cdot c ) \\ \cos\alpha =\displaystyle\frac{b^2+c^2 -a^2}{ 2\cdot b \cdot c}\\ \cos\alpha =\displaystyle\frac{5^2+2,57^2 -6^2}{ 2\cdot 5 \cdot 2,57 } \\ \cos\alpha =-0,17 \\ \alpha=\arccos(-0,17) \\ \alpha=99,8^\circ \\ \text{Winkelsumme: } \alpha + \beta + \gamma =180^\circ\\ \alpha+ \beta + \gamma =180 \qquad /-\alpha \qquad /-\gamma \\ \beta =180^\circ -\alpha - \gamma \\ \beta =180^\circ -99,8^\circ - 25^\circ \\ \beta =55,2^\circ \\ \text{Höhe: } h_a \\ \sin\beta= \displaystyle \frac{h_a}{c} \\ \sin\beta= \displaystyle \frac{h_a}{c} \quad /\cdot c\\ h_a =c \cdot \sin\beta \\ h_a =2,57 \cdot \sin55,2^\circ \\ h_a=2,11 \\ \text{Flaeche: } \quad A = \frac{1}{2}\cdot a \cdot h_a \\ A = \frac{1}{2}\cdot 6 \cdot 2,11 \\ A=6,34 \\ \text{Höhe: } h_b \\ \sin\gamma= \displaystyle \frac{h_b}{a} \\ \sin\gamma= \displaystyle \frac{h_b}{a} \quad /\cdot a\\ h_b =a \cdot \sin\gamma \\ h_b =6 \cdot \sin25^\circ \\ h_b=2,54 \\ \text{Höhe: } h_c \\ \sin\alpha= \displaystyle \frac{h_c}{b} \\ \sin\alpha= \displaystyle \frac{h_c}{b} \quad / \cdot b\\ h_c=b \cdot \sin\alpha \\ h_c=5 \cdot \sin99,8^\circ \\ h_c=4,93 \\ \text{Winkelhalbierende: }\alpha \\ \delta=180-\beta-\frac{\alpha}{2} \\ \text{Sinus-Satz:} \displaystyle \frac{wha}{\sin\beta}=\frac{c}{\sin\delta } \\ \displaystyle \frac{wha}{\sin \beta}=\frac{c}{\sin\delta }\qquad /\cdot \sin\beta \\ wha=\displaystyle\frac{c \cdot \sin\beta}{ \sin\delta } \\ wha =\displaystyle\frac{2,57\cdot \sin55,2 }{ \sin74,9} \\ wha=2,19 \\ \text{Winkelhalbierende: }\beta \\ \delta=180-\frac{\beta}{2}-\gamma \\ \text{Sinus-Satz:} \displaystyle \frac{whb}{\sin\gamma}=\frac{a}{\sin\delta } \\ \displaystyle \frac{whb}{\sin \gamma}=\frac{a}{\sin\delta }\qquad /\cdot \sin\gamma \\ whb=\displaystyle\frac{a \cdot \sin\gamma}{ \sin\delta } \\ whb =\displaystyle\frac{6\cdot \sin25 }{ \sin127} \\ whb=3,19 \\ \text{Winkelhalbierende: }\gamma \\ \delta=180-\alpha-\frac{\gamma}{2} \\ \text{Sinus-Satz:} \displaystyle \frac{whc}{\sin\alpha}=\frac{b}{\sin\delta } \\ \displaystyle \frac{whc}{\sin \alpha}=\frac{b}{\sin\delta }\qquad /\cdot \sin\alpha \\ whc=\displaystyle\frac{b \cdot \sin\alpha}{ \sin\delta } \\ whc =\displaystyle\frac{5\cdot \sin99,8 }{ \sin74,9} \\ whc=6,12 \\ \text{Seitenhalbierende: } \\ s_a=\frac{1}{2}\sqrt{2(b^2+c^2)-a^2} \\ s_a=\frac{1}{2}\sqrt{2(5^2+2,57^2)-6^2} \\ s_a=2,61 \\ \text{Seitenhalbierende: } s_b=\frac{1}{2}\sqrt{2(a^2+c^2)-b^2}\\ s_b=\frac{1}{2}\sqrt{2(6^2+2,57^2)-5^2}\\ s_b=3,88 \\ \text{Seitenhalbierende: } s_c=\frac{1}{2}\sqrt{2(a^2+b^2)-c^2}\\ s_c=\frac{1}{2}\sqrt{2(6^2+5^2)-2,57^2}\\ s_c=4,92 \\ \text{Umkreisradius: } 2\cdot r_u= \displaystyle \frac{a}{\sin\alpha} \\ r_u =\displaystyle\frac{a}{2\cdot\sin\alpha} \\ r_u =\displaystyle\frac{6}{2\cdot\sin99,8^\circ} \\ r_u=3,04 \\ \text{Innkreisradius: }r_i= \displaystyle \frac{2 \cdot A}{U} \\ r_i= \displaystyle \frac{2 \cdot 6,34}{13,6} \\ r_i=0,934 \\$