Beispiel Nr: 05
$ \text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\ \\ \text{Gesucht:} \\\text{Kosinus alpha} \qquad cos \alpha \qquad [] \\ \\ cos \alpha = \sqrt{1 - sin^{2} \alpha }\\ \textbf{Gegeben:} \\ \alpha=120^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\ cos \alpha = \sqrt{1 - sin^{2} \alpha } \\ \alpha=120^{\circ}\\ cos \alpha = \sqrt{1 - sin^{2} 120^{\circ} }\\\\cos \alpha=\frac{1}{2} \\\\\\ \tiny \begin{array}{|l|} \hline alpha=\\ \hline 120 ° \\ \hline 7,2\cdot 10^{3} \text{'} \\ \hline 4,32\cdot 10^{5} \text{''} \\ \hline 133 gon \\ \hline 2,09 rad \\ \hline 0,00209 mrad \\ \hline \end{array} \tiny \begin{array}{|l|} \hline cosalpha=\\ \hline 0,5 rad \\ \hline 500 mrad \\ \hline 28,6 ^\circ \\ \hline 1,72\cdot 10^{3} \text{'} \\ \hline 1,03\cdot 10^{5} \text{'''} \\ \hline 31,8 gon \\ \hline \end{array}$