Beispiel Nr: 04
$ \text{Gegeben:}\\\text{Winkel} \qquad \alpha \qquad [^{\circ}] \\ \\ \text{Gesucht:} \\\text{Sinus alpha} \qquad sin \alpha \qquad [] \\ \\ sin \alpha = \sqrt{1 - cos^{2} \alpha }\\ \textbf{Gegeben:} \\ \alpha=90^{\circ} \qquad \\ \\ \textbf{Rechnung:} \\ sin \alpha = \sqrt{1 - cos^{2} \alpha } \\ \alpha=90^{\circ}\\ sin 90^{\circ} = \sqrt{1 - cos^{2} 90^{\circ} }\\\\sin \alpha=1 \\ \small \begin{array}{|l|} \hline alpha=\\ \hline 90 ° \\ \hline 5,4\cdot 10^{3} \text{'} \\ \hline 3,24\cdot 10^{5} \text{''} \\ \hline 100 gon \\ \hline 1,57 rad \\ \hline 0,00157 mrad \\ \hline \end{array}\\ \small \begin{array}{|l|} \hline sinalpha=\\ \hline 1 rad \\ \hline 10^{3} mrad \\ \hline 57,3 ^\circ \\ \hline 3,44\cdot 10^{3} \text{'} \\ \hline 2,06\cdot 10^{5} \text{'''} \\ \hline 63,7 gon \\ \hline \end{array}\\$