Beispiel Nr: 10
$ \text{Gegeben:} \text{Gerade 1: } \vec{x} =\left( \begin{array}{c} a1 \\ a2 \\ a3 \\ \end{array} \right) + \lambda \left( \begin{array}{c} b1 \\ b2 \\ b3 \\ \end{array} \right) \\ \text{Gerade 2: } \vec{x} =\left( \begin{array}{c} c1 \\ c2 \\ c3 \\ \end{array} \right) + \sigma \left( \begin{array}{c} d1 \\ d2 \\ d3 \\ \end{array} \right) \\ \text{Gesucht:} \text{Die Lage der Geraden zueinander.} \\ \\ \textbf{Gegeben:} \\ \text{Gerade 1: } \vec{x} =\left( \begin{array}{c} 1 \\ 5 \\ 7 \\ \end{array} \right) + \lambda \left( \begin{array}{c} 2 \\ 6 \\ 6 \\ \end{array} \right) \\ \text{Gerade 2: } \vec{x} =\left( \begin{array}{c} 3 \\ 7 \\ 5 \\ \end{array} \right) + \sigma \left( \begin{array}{c} 4 \\ 8 \\ 4 \\ \end{array} \right) \\ \\ \\ \textbf{Rechnung:} \\ \text{Gerade 1: } \vec{x} =\left( \begin{array}{c} 1 \\ 5 \\ 7 \\ \end{array} \right) + \lambda \left( \begin{array}{c} 2 \\ 6 \\ 6 \\ \end{array} \right) \\ \text{Gerade 2: } \vec{x} =\left( \begin{array}{c} 3 \\ 7 \\ 5 \\ \end{array} \right) + \sigma \left( \begin{array}{c} 4 \\ 8 \\ 4 \\ \end{array} \right) \\ \text{Richtungsvektoren: } \\ \left( \begin{array}{c} 2 \\ 6 \\ 6 \\ \end{array} \right) =k \cdot \left( \begin{array}{c} 4 \\ 8 \\ 4 \\ \end{array} \right) \\ \begin{array}{cccc} 2&=&+4 k& \quad /:4 \quad \Rightarrow k=\frac{1}{2} \\ 6&=&+8 k & \quad /:8 \quad \Rightarrow k=\frac{3}{4} \\ 6&=&+4 k & \quad /:4 \quad \Rightarrow k=1\frac{1}{2} \\ \end{array} \\ \\ \Rightarrow \text{Geraden sind nicht parallel} \\ \left( \begin{array}{c} 1 \\ 5 \\ 7 \\ \end{array} \right) + \lambda \left( \begin{array}{c} 2 \\ 6 \\ 6 \\ \end{array} \right) = \left( \begin{array}{c} 3 \\ 7 \\ 5 \\ \end{array} \right) + \sigma \left( \begin{array}{c} 4 \\ 8 \\ 4 \\ \end{array} \right) \\ \begin{array}{cccccc} 1& +2\lambda &=& 3& +4\sigma& \quad /-1 \quad /-4 \sigma\\ 5& +6\lambda &=& 7& +8 \sigma& \quad /-5 \quad /-8 \sigma\\ 7& +6\lambda &=& 5& +4 \sigma& \quad /-7 \quad /-4 \sigma\\ \end{array} \\ \\I \qquad 2 \lambda -4 \sigma =2\\ II \qquad 6 \lambda -8 \sigma = 2 \\ III \qquad 6 \lambda +4 \sigma = -2 \\ \\ \text{Aus 2 Gleichungen }\lambda \text{ und } \sigma \text{ berechnen } \\ I \qquad 2 \lambda -4 \sigma =2 \qquad / \cdot3\\ II \qquad 6 \lambda -8 \sigma = 2 \qquad / \cdot\left(-1\right)\\ I \qquad 6 \lambda -12 \sigma =6\\ II \qquad -6 \lambda +8 \sigma = -2 \\ \text{I + II}\\ I \qquad 6 \lambda -6 \lambda-12 \sigma +8 \sigma =6 -2\\ -4 \sigma = 4 \qquad /:\left(-4\right) \\ \sigma = \frac{4}{-4} \\ \sigma=-1 \\ \sigma \text{ in I}\\ I \qquad 6 \lambda -12 \cdot \left(-1\right) =6 \\ 6 \lambda +12 =6 \qquad / -12 \\ 6 \lambda =6 -12 \\ 6 \lambda =-6 \qquad / :6 \\ \lambda = \frac{-6}{6} \\ \lambda=-1 \\ \lambda \text{ und } \sigma \text{ in die verbleibende Gleichung einsetzen} \\ III \quad 7-1\cdot6=5-1\cdot4 \\ 1=1 \\ \lambda \text{ oder } \sigma \text{ in die Geradengleichung einsetzen} \\ \\ \vec{x} = \left( \begin{array}{c} 1 \\ 5 \\ 7 \\ \end{array} \right) -1 \cdot \left( \begin{array}{c} 2 \\ 6 \\ 6 \\ \end{array} \right) \\ \text{Schnittpunkt: }S(-1,-1,1) \\ \\ $