Beispiel Nr: 12
$\text{Gegeben:} \vec{x} = \left( \begin{array}{c} a_1 \\ a_2 \\ a_3 \\ \end{array} \right) + \lambda \left( \begin{array}{c} b_1 \\ b_2 \\ b_3 \\ \end{array} \right) \\ \text{Punkt: }C(c_1/c_2/c_3) \\ \text{Gesucht:} \text{Liegt der Punkt auf der Geraden} \\ \\ \textbf{Gegeben:} \\ \text{Gerade: } \vec{x} =\left( \begin{array}{c} 1 \\ 1 \\ -3 \\ \end{array} \right) + \lambda \left( \begin{array}{c} 2 \\ 2 \\ 1 \\ \end{array} \right) \\ \text{Punkt: }C(3/3/-2) \\ \\ \textbf{Rechnung:} \\ \text{Punkt - Gerade } \\ \vec{x} =\left( \begin{array}{c} 1 \\ 1 \\ -3 \\ \end{array} \right) + \lambda \left( \begin{array}{c} 2 \\ 2 \\ 1 \\ \end{array} \right) \\ \text{Punkt: }C(3,3,-2) \\ \begin{array}{ccccc} 3&=&1&+2\lambda& \quad /-1 \\ 3&=&1&+2\lambda & \quad /-1\\ -2&=&-3&+1\lambda & \quad /+3\\ \end{array} \\ \begin{array}{cccc} 2&=&2\lambda& \quad /:2 \quad \Rightarrow \lambda=1 \\ 2&=&2\lambda & \quad /:2 \quad \Rightarrow \lambda=1 \\ 1&=&1\lambda & \quad /:1 \quad \Rightarrow \lambda=1 \\ \end{array} \\ \\ \Rightarrow \text{Punkt liegt auf der Geraden} $