Beispiel Nr: 16
$ \text{Gegeben:} \\\text{y-Wert des Punktes P(x;y) auf dem Einheitskreis} \text{Gesucht:} \\\text{Winkel im Einheitskreis } \alpha \qquad [^{\circ}]\\ \\ \sin \alpha - \cos \alpha - \tan \alpha \\ \textbf{Gegeben:} \\ \alpha=270^{\circ} \\ \\ \textbf{Rechnung:} \\ y=sin (270^{\circ}) \\ y=-1\\ x=cos (270^{\circ}) \\ x=0 \\ m=tan (270^{\circ}) \\ m=\infty \\ \small \begin{array}{|l|} \hline alpha=\\ \hline 270 ° \\ \hline 1,62\cdot 10^{4} \text{'} \\ \hline 9,72\cdot 10^{5} \text{''} \\ \hline 300 gon \\ \hline 4,71 rad \\ \hline 0,00471 mrad \\ \hline \end{array}\\$