Beispiel Nr: 08
$\text{Gesucht:}\\ \text{Definitions- und Wertebereich} \\ \text{Grenzwerte} \\ \text{Symmetrie} \\ \text{Nullstellen - Schnittpunkt mit der x-Achse} \\ \text{Ableitungen - Stammfunktion} \\ \text{Extremwerte - Monotonie} \\ \text{Wendepunkte - Krümmung} \\ \text{Stammfunktion} \\ \text{Eingeschlossene Fläche mit der x-Achse} $
$\text{Funktion:}f\left(x\right)=-\frac{1}{6}x^5+2x^3 \ $
$\bullet \text{Funktion/Ableitungen/Stammfunktion} \\ f\left(x\right)=-\frac{1}{6}x^5+2x^3=-\frac{1}{6}(x+3,46)x^3(x-3,46)\\ f'\left(x\right)=-\frac{5}{6}x^4+6x^2=-\frac{5}{6}(x+2,68)x^2(x-2,68)\\ f''\left(x\right)=-3\frac{1}{3}x^3+12x=-3\frac{1}{3}(x+1,9)x(x-1,9)\\ f'''\left(x\right)=-10x^2+12 \\ F(x)=\int_{}^{}(-\frac{1}{6}x^5+2x^3)dx=-\frac{1}{36}x^6+\frac{1}{2}x^4+c \\ \\ \bullet\text{Definitions- und Wertebereich:}\qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = \mathbb{R} \\ \\ \bullet \text{Grenzwerte:} \\ f(x)=x^5(-\frac{1}{6}+\dfrac{2}{x^2}) \\ \lim\limits_{x \rightarrow \infty}{f\left(x\right)}=[-\frac{1}{6}\cdot \infty^5]=-\infty \\\lim\limits_{x \rightarrow -\infty}{f\left(x\right)}=[-\frac{1}{6}\cdot (-\infty)^5]=\infty \\ \\ \bullet \text{Symmetrie zum Ursprung oder zur y-Achse } \\f\left(-x\right)=-\frac{1}{6}\cdot (-x)^{5}+2\cdot (-x)^{3} \\ f\left(-x\right)=-\left(-\frac{1}{6}\cdot x^{5}+2\cdot x^{3}\right) \\ f\left(-x\right)= -f\left(x\right) \rightarrow \text{Symmetrie zum Ursprung:} \\ \\ \bullet \text{Nullstellen / Schnittpunkt mit der x-Achse:} \\f(x)=-\frac{1}{6}x^5+2x^3 = 0 \\ x^3(-\frac{1}{6}x^2+2)=0 \Rightarrow x=0 \quad \vee \quad-\frac{1}{6}x^2+2=0\\ -\frac{1}{6}x^2+2 =0 \qquad /-2 \\ -\frac{1}{6}x^2= -2 \qquad /:\left(-\frac{1}{6}\right) \\ x^2=\displaystyle\frac{-2}{-\frac{1}{6}} \\ x=\pm\sqrt{12} \\ x_1=3,46 \qquad x_2=-3,46 \\ \underline{x_1=-3,46; \quad1\text{-fache Nullstelle}} \\\underline{x_2=0; \quad3\text{-fache Nullstelle}} \\\underline{x_3=3,46; \quad1\text{-fache Nullstelle}} \\ \\ \bullet \text{Vorzeichentabelle:} \\ \begin{array}{|c|c|c|c|c|c|c|c|c|c||} \hline & x < &-3,46&< x <&0&< x <&3,46&< x\\ \hline f(x)&+&0&-&0&+&0&-\\ \hline \end{array}\\ \\ \underline{\quad x \in ]-\infty;-3,46[\quad \cup \quad]0;3,46[\quad f(x)>0 \quad \text{oberhalb der x-Achse}}\\ \\ \underline{\quad x \in ]-3,46;0[\quad \cup \quad]3,46;\infty[\quad f(x)<0 \quad \text{unterhalb der x-Achse}} \\ \\ \bullet \text{Extremwerte/Hochpunkte/Tiefpunkte:} \\f'(x)=-\frac{5}{6}x^4+6x^2 = 0 \\ x^2(-\frac{5}{6}x^2+6)=0 \Rightarrow x=0 \quad \vee \quad-\frac{5}{6}x^2+6=0\\ -\frac{5}{6}x^2+6 =0 \qquad /-6 \\ -\frac{5}{6}x^2= -6 \qquad /:\left(-\frac{5}{6}\right) \\ x^2=\displaystyle\frac{-6}{-\frac{5}{6}} \\ x=\pm\sqrt{7\frac{1}{5}} \\ x_1=2,68 \qquad x_2=-2,68 \\ \underline{x_4=-2,68; \quad1\text{-fache Nullstelle}} \\\underline{x_5=0; \quad2\text{-fache Nullstelle}} \\\underline{x_6=2,68; \quad1\text{-fache Nullstelle}} \\f''(-2,68)=32,2>0 \Rightarrow \underline{\text{Tiefpunkt:} (-2,68/-15,5)} \\ f''(0)=0 \\ f''(0)=0 \Rightarrow \\ \underline{\text{Terrassenpukt:} (0/0)} \\ f''(2,68)=-32,2 \\ f''(2,68)<0 \Rightarrow \underline{\text{Hochpunkt:} (2,68/15,5)} \\ \\ \bullet\text{Monotonie/ streng monoton steigend (sms)/streng monoton fallend (smf) } \\ \begin{array}{|c|c|c|c|c|c|c|c|c|c||} \hline & x < &-2,68&< x <&0&< x <&2,68&< x\\ \hline f'(x)&-&0&+&0&+&0&-\\ \hline \end{array}\\ \\ \underline{\quad x \in ]-2,68;0[\quad \cup \quad]0;2,68[\quad f'(x)>0 \quad \text{streng monoton steigend }}\\ \\ \underline{\quad x \in ]-\infty;-2,68[\quad \cup \quad]2,68;\infty[\quad f'(x)<0 \quad \text{streng monoton fallend }} \\ \\\bullet\text{Wendepunkte:} \\f''(x)=-3\frac{1}{3}x^3+12x = 0 \\ x(-3\frac{1}{3}x^2+12)=0 \Rightarrow x=0 \quad \vee \quad-3\frac{1}{3}x^2+12=0\\ -3\frac{1}{3}x^2+12 =0 \qquad /-12 \\ -3\frac{1}{3}x^2= -12 \qquad /:\left(-3\frac{1}{3}\right) \\ x^2=\displaystyle\frac{-12}{-3\frac{1}{3}} \\ x=\pm\sqrt{3\frac{3}{5}} \\ x_1=1,9 \qquad x_2=-1,9 \\ \underline{x_7=-1,9; \quad1\text{-fache Nullstelle}} \\\underline{x_8=0; \quad1\text{-fache Nullstelle}} \\\underline{x_9=1,9; \quad1\text{-fache Nullstelle}} \\f'''(-1,9)=-9,56\\ f'''(-1,9) \neq 0 \Rightarrow \\ \underline{\text{Wendepunkt:} (-1,9/-9,56)}\\ f'''(0)=0\\ f'''(0) \neq 0 \Rightarrow \\ \underline{\text{Wendepunkt:} (0/0)}\\ f'''(1,9)=9,56\\ f'''(1,9) \neq 0 \Rightarrow \\ \underline{\text{Wendepunkt:} (1,9/9,56)}\\ \bullet\text{Kruemmung} \\ \begin{array}{|c|c|c|c|c|c|c|c|c|c||} \hline & x < &-1,9&< x <&0&< x <&1,9&< x\\ \hline f''(x)&+&0&-&0&+&0&-\\ \hline \end{array}\\ \\ \underline{\quad x \in ]-\infty;-1,9[\quad \cup \quad]0;1,9[\quad f''(x)>0 \quad \text{linksgekrümmt}}\\ \\ \underline{\quad x \in ]-1,9;0[\quad \cup \quad]1,9;\infty[\quad f''(x)<0 \quad \text{rechtsgekrümmt }}\\ \\ \bullet\text{Eingeschlossene Fläche mit der x-Achse} \\A=\int_{-3,46}^{0}\left(-\frac{1}{6}x^5+2x^3\right)dx=\left[-\frac{1}{36}x^6+\frac{1}{2}x^4\right]_{-3,46}^{0} \\ =\left(-\frac{1}{36}\cdot 0^{6}+\frac{1}{2}\cdot 0^{4}\right)-\left(-\frac{1}{36}\cdot (-3,46)^{6}+\frac{1}{2}\cdot (-3,46)^{4}\right) \\ =\left(0\right)-\left(24\right)=-24 \\ A=\int_{0}^{3,46}\left(-\frac{1}{6}x^5+2x^3\right)dx=\left[-\frac{1}{36}x^6+\frac{1}{2}x^4\right]_{0}^{3,46} \\ =\left(-\frac{1}{36}\cdot 3,46^{6}+\frac{1}{2}\cdot 3,46^{4}\right)-\left(-\frac{1}{36}\cdot 0^{6}+\frac{1}{2}\cdot 0^{4}\right) \\ =\left(24\right)-\left(0\right)=24 \\ \\ $