Beispiel Nr: 09
$ \text{Gegeben:}\\\text{Breite} \qquad b \qquad [m] \\ \text{Länge} \qquad a \qquad [m] \\ \\ \text{Gesucht:} \\\text{Diagonale} \qquad d \qquad [m] \\ \\ d = \sqrt{a^{2} +b^{2} }\\ \textbf{Gegeben:} \\ b=1\frac{2}{3}m \qquad a=\frac{4}{5}m \qquad \\ \\ \textbf{Rechnung:} \\ d = \sqrt{a^{2} +b^{2} } \\ b=1\frac{2}{3}m\\ a=\frac{4}{5}m\\ d = \sqrt{(\frac{4}{5}m)^{2} +(1\frac{2}{3}m)^{2} }\\\\d=1,85m \\\\\\ \tiny \begin{array}{|l|} \hline b=\\ \hline 1,67 m \\ \hline 16,7 dm \\ \hline 167 cm \\ \hline 1,67\cdot 10^{3} mm \\ \hline 1,67\cdot 10^{6} \mu m \\ \hline 0,00167 km \\ \hline \end{array} \tiny \begin{array}{|l|} \hline a=\\ \hline 0,8 m \\ \hline 8 dm \\ \hline 80 cm \\ \hline 800 mm \\ \hline 8\cdot 10^{5} \mu m \\ \hline 0,0008 km \\ \hline \end{array} \tiny \begin{array}{|l|} \hline d=\\ \hline 1,85 m \\ \hline 18,5 dm \\ \hline 185 cm \\ \hline 1,85\cdot 10^{3} mm \\ \hline 1,85\cdot 10^{6} \mu m \\ \hline 0,00185 km \\ \hline \end{array}$