Inhaltsverzeichnis

4 Analysis
4.1 Grenzwert - Stetigkeit ... 2
 4.1.1 Grenzwert von f(x) für x gegen x0 2
 4.1.2 Grenzwert von f(x) für x gegen Unendlich 3
 4.1.3 Stetigkeit .. 3
 4.1.4 Rechenregeln .. 4
4.2 Differentialrechnung ... 6
 4.2.1 Definition ... 6
 4.2.2 1. Ableitung - Monotonie - Extremwerte 7
 4.2.3 Graph der 1. Ableitung .. 9
 4.2.4 2. Ableitung - Krümmung - Wendepunkte 10
 4.2.5 Graph der 2. Ableitung .. 12
 4.2.6 Ableitung der Grundfunktionen .. 13
 4.2.7 Ableitungsregeln .. 14
 4.2.8 Tangenten- und Normalengleichung 15
 4.2.9 Newtonsches Iterationsverfahren 16
4.3 Integralrechnung .. 17
 4.3.1 Definition ... 17
 4.3.2 Integration der Grundfunktionen 19
 4.3.3 Integrationsregeln .. 19
 4.3.4 Graph der Stammfunktion ... 21
4.4 Kurvendiskussion .. 22
 4.4.1 Ganzrationale Funktion ... 22
 4.4.2 Gebrochenrationale Funktion ... 29
 4.4.3 Exponentialfunktion (Basis e) .. 33
 4.4.4 Logarithmusfunktion (Basis e) ... 36
4.5 Aufstellen von Funktionsgleichungen .. 39
 4.5.1 Ganzrationale Funktion ... 39
4 Analysis

4.1 Grenzwert - Stetigkeit

4.1.1 Grenzwert von \(f(x) \) für \(x \) gegen \(x_0 \)

- Linkseitiger Grenzwert (LGW) von \(f(x) \) geht gegen eine Konstante (konvergiert)
 \[
 \lim_{x \to x_0^-} f(x) = a \\
 \lim_{x \to x_0^-} f(x) = a
 \]
- Rechtseitiger Grenzwert (RGW) von \(f(x) \) geht gegen eine Konstante (konvergiert)
 \[
 \lim_{x \to x_0^+} f(x) = a \\
 \lim_{x \to x_0^+} f(x) = a
 \]
- Grenzwert von \(f(x) \) existiert

\[
\text{linkseitiger Grenzwert } = \text{ rechtseitiger Grenzwert}
\]

\[
\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = a
\]

\[
\lim_{x \to x_0} f(x) = a
\]

- Linkseitiger Grenzwert von \(f(x) \) geht gegen Unendlich (bestimmt divergiert)
 \[
 \lim_{x \to x_0^-} f(x) = \pm \infty
 \]
- Rechtseitiger Grenzwert von \(f(x) \) geht gegen Unendlich (bestimmt divergiert)
 \[
 \lim_{x \to x_0^+} f(x) = \pm \infty
 \]

\[\Rightarrow \text{ vertikale Asymptote - Polstelle an der Stelle } x = x_0\]

\[
f_1(x) = \frac{(x - 4)}{(x + 2)(x - 4)} \quad f_2(x) = \ln(x - 1) + 1
\]

\[
f_3(x) = e^x + 1
\]

\[
\begin{array}{c|c|c}
\text{D} & \text{f(x) für x gegen 4} & \text{lim}_{x \to 4^-} f(x) = \frac{2}{5} \\
\hline
3,999 & 0,166945 & \lim_{x \to 4^-} \frac{(x - 4)}{(x + 2)(x - 4)} = \frac{1}{5} \\
3,9999 & 0,166669 & \lim_{x \to 4^-} \frac{1}{(x + 2)} = \frac{1}{6} \\
3,99999 & 0,166667 & \\
4,0001 & 0,166664 & \\
4,00001 & 0,16666 & \\
\end{array}
\]

\[
\text{lim}_{x \to 4^-} f(x) = \frac{2}{5} \Rightarrow \text{Stetig behebbare Definitionslos}
\]

\[
\begin{array}{c|c|c}
\text{lim}_{x \to -2^-} f(x) = \infty & \lim_{x \to -2^-} \frac{(x - 4)}{(x + 2)(x - 4)} = \infty \\
-2,0001 & 100000 & \lim_{x \to -2^-} \frac{(x + 2)}{(x - 4)} = -\infty \\
-2,0001 & 999999 & \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{lim}_{x \to -2^-} f(x) = \infty & \lim_{x \to -2^+} \frac{(x - 4)}{(x + 2)(x - 4)} = \infty \\
-1,999 & 100000 & \lim_{x \to -2^+} \frac{(x + 2)}{(x - 4)} = -\infty \\
-1,99999 & 1000000 & \\
-1,999999 & 999999 & \\
\end{array}
\]

\[
\text{lim}_{x \to -2^+} \ln(x - 1) + 2 = -\infty
\]

\text{Vertikale Asymptote (Polstelle): } x = 1

Interaktive Inhalte:

Grenzwerte
4.1.2 Grenzwert von f(x) für x gegen Unendlich

- Grenzwert von f(x) geht gegen eine Konstante (konvergiert)
 \[\lim_{x \to \pm\infty} f(x) = a \]
 \(\Rightarrow \) horizontale Asymptote \(y = a \)

- Grenzwert von f(x) geht gegen Unendlich (bestimmt divergiert)
 \[\lim_{x \to \pm\infty} f(x) = \pm\infty \]

Funktion:
\[f(x) = -x^3 \]

Grenzwert von f(x) für x gegen unendlich und gegen -unendlich:

\[
\begin{array}{c|c|c}
 x \to \infty & f(x) \to -\infty & x \to -\infty & f(x) \to \infty \\
10 & -1000 & -10 & 1000 \\
100 & -1000000 & -100 & 1000000 \\
1000 & -1000000000 & -1000 & 1000000000 \\
10000 & -1000000000000 & -10000 & 1000000000000 \\
\end{array}
\]

\[\lim_{x \to \infty} -x^3 = [-1 \cdot \infty^3] = -\infty \]
\[\lim_{x \to \infty} -x^3 = [-1 \cdot (-\infty)^3] = \infty \]

\[f(x) = \frac{(x - 4)}{(x + 2)(x - 4)} \quad D = \mathbb{R} \setminus \{-2; 4\} \]

Grenzwert von f(x) für x gegen unendlich und gegen -unendlich:

\[
\begin{array}{c|c|c|c|c}
 x \to \infty & f(x) \to 0 & x \to -\infty & f(x) \to 0 & x \to \pm\infty \\
10 & 0,083333 & -10 & -0,125 & \\
100 & 0,009804 & -100 & -0,010204 & \\
1000 & 0,000998 & -1000 & -0,001002 & \\
10000 & 0,00001 & -10000 & -0,0001 & \\
100000 & 0,000001 & -100000 & -0,00001 & \\
\end{array}
\]

\[f_1(x) = \frac{(x - 4)}{(x + 2)(x - 4)} = \frac{x - 4}{x^2 - 2x - 4} = \frac{x(1 - \frac{4}{x})}{x^2(1 - \frac{2}{x} - \frac{8}{x^2})} \]

\[\lim_{x \to \pm\infty} \frac{x(1 - \frac{4}{x})}{x^2(1 - \frac{2}{x} - \frac{8}{x^2})} = \lim_{x \to \pm\infty} \frac{x}{x^2} = \lim_{x \to \pm\infty} \frac{1}{x} = 0 \]

Horizontale Asymptote: \(y = 0 \)

\[f_2(x) = \ln(x - 1) + 2 \]
\[\lim_{x \to \infty} \ln(x - 1) + 2 = \infty \]

\[f_3(x) = e^x + 1 \]
\[\lim_{x \to \infty} e^x + 1 = \infty \]
\[\lim_{x \to \infty} e^x + 1 = 1 \]

Horizontale Asymptote: \(y = 1 \)

Interaktive Inhalte:

4.1.3 Stetigkeit

\[f_1(x) = \begin{cases} x^2 - 4, & x \leq 1 \\ \frac{1}{2} x - 4 \frac{1}{2}, & x > 1 \end{cases} \]

\[f_2(x) = \begin{cases} x^2 - 4, & x \leq 1 \\ \frac{1}{2} x - 1 \frac{1}{2}, & x > 1 \end{cases} \]

\[f_3(x) = \frac{(x - 4)}{(x + 2)(x - 4)} \]

Unterstützen Sie meine Arbeit durch eine Spende. 3 https://fersch.de
\[f_1(x) = \begin{cases} x^2 - 4, & x \leq 1 \\ \frac{1}{2}x - 4^{\frac{1}{2}}, & x > 1 \end{cases} \]

\[\lim_{x \to 1^-} x^2 - 4 = -3 \]

\[\lim_{x \to 1^+} \frac{1}{2}x - 4^{\frac{1}{2}} = -3 \]

FW: \(f_1(1) = 1^2 - 4 = -3 \)

LGW = RGW = FW \Rightarrow ist stetig an der Stelle \(x_0 = 1 \)

\[f_2(x) = \begin{cases} x^2 - 4, & x \leq 1 \\ \frac{3}{4}x - 1^{\frac{3}{4}}, & x > 1 \end{cases} \]

\[\lim_{x \to 1^-} x^2 - 4 = -3 \]

\[\lim_{x \to 1^+} \frac{3}{4}x - 1^{\frac{3}{4}} = -1 \]

FW: \(f_1(1) = 1^2 - 4 = -3 \)

LGW \neq RGW \neq FW \Rightarrow ist unstetig an der Stelle \(x_0 = 1 \)

\[f_3(x) = \frac{(x - 4)}{(x + 2)(x - 4)} = \frac{1}{x + 2} \quad \mathbb{D} = \mathbb{R} \setminus \{-2; 4\} \]

\[f_3(x) \text{ stetig in } D \]

\[\lim_{x \to +1} \frac{1}{x + 2} = \frac{1}{6} \]

\[\lim_{x \to -1} \frac{1}{x + 2} = \frac{1}{6} \]

RGW = LGW \Rightarrow stetig behebbare Definitionslücke: \(x_0 = 4 \)

Stetige Fortsetzung von \(f_2(x) \)

\[f_4(x) = \frac{1}{x + 2} \quad \mathbb{D} = \mathbb{R} \setminus \{-2\} \]

- Ein Funktion ist an der Stelle \(x_0 \) stetig, wenn der
 linksseitiger GW = rechtsseitiger GW = Funktionswert \(f(x) \)

\[\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0) \]

- Stetige Funktionen
 - Ganzrationale Funktionen
 - Exponentialfunktionen
 - Sinus- und Kosinusfunktion

- Stetige Funktionen, bei denen die Unstetigkeitsstellen aus
 dem Definitionsbeizreich ausgeschlossen sind:
 - Gebrochenrationale Funktionen
 - Logarithmusfunktionen
 - Tangensfunktion

- Abschnittsweise definierte Funktionen müssen an den
 Schnittstellen auf Stetigkeit untersucht werden.

- Stetig behebbare Definitionslücke \(x_0 \)
 - linksseitiger GW = rechtsseitiger GW

\[\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \]

- Interaktive Inhalte:
 \[
 \begin{array}{l}
 \text{Grenzwerte} \\
 \end{array}
 \]

4.1.4 Rechenregeln

Wichtige Grenzwerte

\[
\begin{align*}
\lim_{x \to 0} a \cdot x &= 0 \\
\lim_{x \to 0} a &= \infty \\
\lim_{x \to \infty} a \cdot x &= \infty \\
\lim_{x \to \infty} a &= 0 \\
\lim_{x \to -\infty} e^x &= \infty \\
\lim_{x \to \infty} e^x &= 0 \\
\lim_{x \to 0^+} \ln x &= -\infty \\
\lim_{x \to \infty} \ln x &= \infty
\end{align*}
\]

Rechenregeln

\[
\begin{align*}
\lim_{x \to x_0} f(x) &= f(x_0) \\
\lim_{x \to x_0} g(x) &= g(x) \\
\lim_{x \to x_0} (f(x) + g(x)) &= \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = f(x_0) + g(x_0) \\
\lim_{x \to x_0} (f(x) - g(x)) &= \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x) = f(x_0) - g(x_0) \\
\lim_{x \to x_0} (f(x) \cdot g(x)) &= \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0) \\
\lim_{x \to x_0} \frac{f(x)}{g(x)} &= \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{f(x_0)}{g(x_0)} \\
g(x) \neq 0
\end{align*}
\]

\[
\begin{align*}
\lim_{x \to x_0} \frac{1}{x} &= 1 - \frac{4}{x} \\
\lim_{x \to \pm \infty} \left(1 - \frac{4}{x} - \frac{8}{x^2}\right) &= 0
\end{align*}
\]

- Zähler:

\[\lim_{x \to \pm \infty} \left(1 - \frac{4}{x} - \frac{8}{x^2}\right) = 0 \]

- Nenner:

\[\lim_{x \to \pm \infty} \frac{8}{x^2} = 0 \quad \lim_{x \to \pm \infty} \frac{2}{x} = 0 \quad \lim_{x \to \pm \infty} x(1 - 0 - 0) = \infty \]

Zähler durch Nenner: \(\frac{1}{\infty} = 0 \)
Unbestimmte Ausdrücke

Typ 1: \(\lim_{x \to 0} \frac{f(x)}{g(x)} = 0 \)
Typ 2: \(\lim_{x \to \pm\infty} \frac{f(x)}{g(x)} = \pm\infty \)

Regel von L'Hospital
Zähler und Nenner getrennt ableiten, bis man den Grenzwert berechnen kann.
\[\lim_{x \to \pm\infty} \frac{f(x)}{g(x)} = \lim_{x \to \pm\infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \pm\infty} \frac{f''(x)}{g''(x)} \ldots \]

Typ 3: \(\lim_{x \to \pm\infty} f(x) \cdot g(x) = 0 \cdot \pm\infty \)
- Umformen in Typ 1 oder 2 und danach L'Hospital anwenden

Typ 4: \(\lim_{x \to \pm\infty} (f(x) - g(x)) = \pm\infty - \pm\infty \)
- Brüche auf gemeinsamen Hauptnennern bringen
- Faktorisieren

Wichtige unbestimmte Ausdrücke

\[\lim_{x \to \infty} \frac{x^n}{e^x} = 0 \quad \lim_{x \to 0^+} \frac{\ln x}{x^n} = 0 \]
\[\lim_{x \to \infty} \frac{e^x}{x^n} = \infty \quad \lim_{x \to \infty} \frac{\ln x}{x^n} = \infty \]

Typ 1: \(\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = \cos 0 = 1 \)
Typ 2: \(\lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2 \cdot x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = \frac{2}{\infty} = 0 \)
Typ 3: \(\lim_{x \to \infty} x \cdot e^{-x} = \lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0 \)
Typ 4: \(\lim_{x \to \infty} \frac{\ln x}{x^3} = \lim_{x \to \infty} \frac{4 \ln x}{x^3} = \lim_{x \to \infty} \frac{4 \cdot 1}{x^3} = 0 \)

Unterstützen Sie meine Arbeit durch eine Spende. https://fersch.de
4.2 Differentialrechnung

4.2.1 Definition

Sekantensteigung

Eine Gerade schneidet eine Funktion in den Punkten $P_1(x_0; f(x_0))$ und $P_2(x; f(x))$.

Steigung der Sekante an der Stelle x_0

$$m = \frac{\Delta y}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$

$\Delta x = h$ $x = x_0 + h$

$$m = \frac{f(x_0 + h) - f(x_0)}{h}$$

Sekantensteigung = Differenzenquotient = Mittlere Änderungsrate

Für kleine h ist die Sekantensteigung \approx Tangentensteigung $m \approx f'(x_0)$

Tangentensteigung

Δy

Der Tangentensteigung m durch die Punkte

$P_1(0,5; 0,25)$ $P_2(1,5; 2,25)$

$$m = \frac{f(x) - f(x_0)}{x - x_0}$$

$$m = \frac{2,25 - 0,25}{1,5 - 0,5} = 2$$

Die Sekantensteigung m an der Stelle $x_0 = 0,5$ und $h = 1$

$$m = \frac{f(x_0 + h) - f(x_0)}{h}$$

$$m = \frac{0,5 + 1 - f(0,5)}{0,5} = 2$$

Die Sekantensteigung m an der Stelle $x_0 = 0,25$ und $h = 0,001$

$$m = \frac{f(x_0 + h) - f(x_0)}{h}$$

$$m = \frac{0,25 + 0,001 - f(0,5)}{0,001} = 1,001$$

$m \approx f'(0,5) = 1$

1. Ableitung - Differentialquotient

Die Ableitung von $f(x)$ ist die Steigung des Graphen der Funktion $f(x)$ an der Stelle x_0.

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$x = x_0 + h$$

$$f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

1. Ableitung = Steigung der Tangente = Steigung der Funktion $f(x)$=lokale (momentane) Änderungsrate

Die Ableitung von $f(x)$ an einer beliebigen Stelle x

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

1. Ableitung von $f(x) = x^2$ an der Stelle $x_0 = 0,5$

$$f'(1) = \lim_{h \to 0} \frac{(0,5 + h)^2 - 0,5^2}{h}$$

$$f'(1) = \lim_{h \to 0} \frac{0,25 + h + h^2 - 0,25}{h}$$

$$f'(1) = \lim_{h \to 0} \frac{h(1 + h)}{h}$$

$$f'(1) = \lim_{h \to 0} 1 + h = 1$$

Die Ableitung von $f(x) = x^2$ an einer beliebigen Stelle x

$$f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{x^2 + 2hx + h^2 - x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{h(2x + h)}{h} = \lim_{h \to 0} 2x + h = 2x$$

$$f'(x) = 2x$$

$$f'(0,5) = 1$$
2. Ableitung

$$f(x) = -x^4 + 3x^2 + 2x$$
$$f'(x) = -4x^3 + 6x + 2$$
$$f''(x) = -12x^2 + 6$$

Interaktive Inhalte:

Tangente steigung

4.2.2 1. Ableitung - Monotonie - Extremwerte

$f_1(x) = \frac{1}{32}x^3 - \frac{1}{2}$

Steigung $m = f'(x_0)$

- Funktion
 $$f(x) = \frac{1}{32}x^3 - \frac{1}{2}x$$
- 1. Ableitung
 $$f'(x) = \frac{3}{32}x^2 - \frac{3}{2}$$
 Steigung an der Stelle $x = -6$
 $$m = f'(-6) = \frac{15}{2}$$
 Steigung an der Stelle $x = -2$
 $$f'(-2) = -1\frac{1}{8}$$

Stelle x_0 an der $f(x_0)$ die Steigung m besitzt

$$f'(x) = m$$

Bei horizontalen Tangenten ist die Steigung Null.
$$f'(x) = 0$$

Stelle x_0 an der $f(x_0)$ die Steigung m besitzt

- 1. Ableitung
 $$f'(x) = \frac{3}{32}x^2 - \frac{3}{2}$$
 Horizontale Tangente
 $$\frac{3}{32}x^2 - \frac{1}{2} = 0$$
 $$\frac{3}{32}x^2 = \frac{1}{2}$$
 $$x = \pm\sqrt{16}$$
 $$x_1 = 4$$ $$x_2 = -4$$

Unterstützen Sie meine Arbeit durch eine Spende. 7 https://fersch.de
Monotonieverhalten

monoton steigend	$f'(x) \geq 0$
streng monoton steigend	$f'(x) > 0$
monoton fallend	$f'(x) \leq 0$
streng monoton fallend	$f'(x) < 0$

Das Monotonieverhalten kann sich nur an den Extremstellen und an den Rändern des Definitionsbereichs (Definitionslücken) ändern.

Extremwerte und das Monotonieverhalten

Extremwerte sind Hochpunkte (Maxima) bzw. Tiefpunkte (Minima) der Funktion. In den Extremwerten hat $f(x)$ eine horizontale Tangente (HT).
- $f'(x) = 0$ (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen (x_0, x_1...). In diesen Nullstellen (x_0, x_1...) kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Zur Unterscheidung werden die Nullstellen in die Vorzeichentabelle eintragen. Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von $f'(x)$ in die Tabelle eintragen. (Hinreichende Bedingung)
- Hochpunkt (HP)
- Monotonieverhalten ändert sich von streng monoton steigend (sms) nach streng monoton fallend (smf).

Vorzeichenwechsel (VZW) der 1. Ableitung $f'(x)$ von Plus nach Minus.

| $x < x_1$ | $x_1 < x$ |
| $f'(x)$ | + | 0 | - |

Graph sms HP smf

- Tiefpunkt (TP)

Monotonieverhalten ändert sich von streng monoton fallend (smf) nach streng monoton steigend (sms).

Vorzeichenwechsel (VZW) der 1. Ableitung $f'(x)$ von Minus nach Plus.

| $x < x_1$ | $x_1 < x$ |
| $f'(x)$ | - | 0 | + |

Graph smf TP smf

- Terrassenpunkt (TEP)

| $x < x_1$ | $x_1 < x$ |
| $f'(x)$ | + | 0 | + |

Graph sms TEP smf

Die Ränder des Definitionsbereichs (Definitionslücken) müssen in die Tabelle mit eingetragen werden.

Funktionsausschnitte

| Funktion | $f_1(x) = \frac{1}{12}x^3 - \frac{1}{4}x$ |
| 1. Ableitungen | $f'(x) = \frac{1}{4}x^2 - \frac{1}{4}$, $f''(x) = 0$ |

- $3\frac{x^2}{4} - \frac{1}{4} = 0$ / $+ \frac{1}{4}$

$x^2 = \frac{4}{3} = \sqrt{\frac{4\pi}{3}}$

$x = \pm \sqrt{\frac{4\pi}{3}}$

$x_1 = 4$ $x_2 = -4$

- Hochpunkt: $(-4/4)$ Tiefpunkt: $(4/4)$

Monotonieverhalten

$x \in [-\infty; -4] \cup [4; \infty]$ $f'(x) > 0$ sms

$x \in [-4; 4]$ $f'(x) < 0$ smf

Funktionsausschnitte

| Funktion | $f_2(x) = \frac{1}{2}x^3 - \frac{1}{2}$ |
| 1. Ableitungen | $f'(x) = \frac{3}{2}x^2 - \frac{1}{2}$, $f''(x) = 0$ |

$x^2 = \frac{1}{3} = \frac{4\pi}{3}$

Zähler $= 0$

$x^2(x - 1) = 0 \Rightarrow x = 0$ / $+ 1$

$x = \frac{1}{2}$

$x_0 = 0$; 2-fache Nullstelle

$x_1 = 1$; 1-fache Nullstelle

Nullstellen des Nenners aus $f(x)$ übernehmen $z_3 = 1$
Extremwerte und die 2. Ableitung

In den Extremwerten hat $f(x)$ eine horizontale Tangente (HT).

- $f'(x) = 0$ (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen ($x_0, x_1..$).

In diesen Nullstellen ($x_0, x_1..$) kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Einsetzen der Nullstellen $x_0, x_1..$ in die 2. Ableitung (Hinreichende Bedingung).

- $f''(x_0) > 0$ (LK) \Rightarrow Tiefpunkt (Minimum) bei x_0
- $f''(x_0) < 0$ (RK) \Rightarrow Hochpunkt (Maximum) bei x_0
- $f''(x_0) = 0 \land f'''(x_0) \neq 0$ \Rightarrow Terrassenpunkt

Funktion $f_1(x) = \frac{1}{32}x^3 - \frac{5}{2}x$

Funktion $f_2(x) = \frac{1}{2}x^3 - 1,5x$

4.2.3 Graph der 1. Ableitung

Ableitung $f'_1(x) = \frac{3}{32}x^2 - 1,5$

Ableitung $f'_2(x) = \frac{x^2 - 1,5x^2}{(x-1)^2}$

sms - streng monoton steigend; smf - streng monoton fallend; VZW - Vorzeichenwechsel; NST - Nullstelle; HP - Hochpunkt (Maximum); TP - Tiefpunkt (Minimum); HT - horizontale Tangente; TEP - Terrassenpunkt; VA - vertikale Asymptote; HA - horizontale Asymptote; LK - Linkskrümmung; RK - Rechtskrümmung; WP - Wendepunkt; PS - Punktsymmetrie zum Ursprung; AS - Achsensymmetrie
zur y-Achse

Funktion - 1. Ableitung $f'(x)$

<table>
<thead>
<tr>
<th>Funktion $f(x)$</th>
<th>Ableitung $f'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremwert</td>
<td>NST $f'(x) = 0$</td>
</tr>
<tr>
<td>HT</td>
<td>NST $f'(x) = 0$</td>
</tr>
<tr>
<td>HP</td>
<td>NST und VZW von + nach −</td>
</tr>
<tr>
<td>TP</td>
<td>NST und VZW von − nach +</td>
</tr>
<tr>
<td>TEP</td>
<td>NST ohne VZW</td>
</tr>
<tr>
<td>WP</td>
<td>Extremwert</td>
</tr>
<tr>
<td>sms</td>
<td>$f'(x) > 0$ (positiv)</td>
</tr>
<tr>
<td>smf</td>
<td>$f'(x) < 0$ (negativ)</td>
</tr>
<tr>
<td>VA</td>
<td>VA $\lim_{x \to x_0} f'(x) = \pm \infty$</td>
</tr>
<tr>
<td>HA</td>
<td>HA $\lim_{x \to \pm \infty} f'(x) = 0$</td>
</tr>
<tr>
<td>PS</td>
<td>AS</td>
</tr>
<tr>
<td>AS</td>
<td>PS</td>
</tr>
</tbody>
</table>

2. Ableitung - Krümmung - Wendepunkte

$f_1(x) = \frac{1}{32} x^3 - 1,5x$
$f_1'(x) = \frac{3}{32} x^2 - 1.5$
$f_1''(x)$

<table>
<thead>
<tr>
<th>Extremwert</th>
<th>$x = -4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>$x = -4$</td>
</tr>
<tr>
<td>WP</td>
<td>$x = 0$</td>
</tr>
<tr>
<td>VZW</td>
<td>$x = -4$</td>
</tr>
<tr>
<td>Extremwert</td>
<td>$x = 0$</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>$x < -4$</td>
</tr>
</tbody>
</table>

4.2.4 2. Ableitung - Krümmung - Wendepunkte

Funktionsgraph

- $f_1(x) = \frac{1}{32} x^3 - 1,5x$
- $f_1'(x) = \frac{3}{32} x^2 - 1.5$
- $f_1''(x)$

Wertetable

VZW - Vorzeichenwechsel; NST - Nullstelle; HT - horizontale Tangente; TEP - Terrassenpunkt; VA - vertikale Asymptote; HA - horizontale Asymptote; LK - Linkskrümmung; RK - Rechtskrümmung; WP - Wendepunkt;

Krümmung von $f(x_0)$ an der Stelle x_0

- Rechtskrümmung RK $f''(x) < 0$
- Linkskrümmung LK $f''(x) > 0$

Das Krümmungsverhalten kann sich nur an den Nullstellen der 2. Ableitung und an den Rändern des Definitionsbereichs (Definitionsstellen) ändern.
Wendepunkte und das Krümmungsverhalten

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.
- \(f''(x) = 0 \) (Notwendige Bedingung)
 Die Nullstellen der 2. Ableitung bestimmen \((x_0, x_1, \ldots)\). Zur Unterscheidung zwischen Wendepunkt und Flachpunkt werden die Nullstellen in die Vorzeichenbremse eintragen (Hinreichende Bedingung). Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von \(f''(x) \) in die Tabelle eintragen.
- Wendepunkt (WP)
 Das Krümmungsverhalten ändert sich von rechtsgekrümmt (RK) nach linksgekrümmt (LK) oder von linksgekrümmt nach rechtgekrümmt.

<table>
<thead>
<tr>
<th>(x < x_1 < x)</th>
<th>(f''(x))</th>
<th>(x < x_1 < x)</th>
<th>(f''(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>WK</td>
<td>Graph</td>
<td>WK</td>
</tr>
<tr>
<td>LK</td>
<td>WP</td>
<td>RK</td>
<td>WP</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Flachpunkt (FP)
 Krümmungsverhalten ändert sich nicht
 Kein Vorzeichenwechsel (VZW) der 2. Ableitung

<table>
<thead>
<tr>
<th>(x < x_1 < x)</th>
<th>(f''(x))</th>
<th>(x < x_1 < x)</th>
<th>(f''(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>WK</td>
<td>Graph</td>
<td>WK</td>
</tr>
<tr>
<td>LK</td>
<td>FP</td>
<td>LK</td>
<td>FP</td>
</tr>
</tbody>
</table>

Die Ränder des Definitionsbeziehens (Definitionslücken) müssen in die Tabelle mit eingetragen werden.

Wendepunkte und die 3. Ableitung

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.
- \(f''(x) = 0 \) (Notwendige Bedingung)
 Die Nullstellen der 2. Ableitung bestimmen \((x_0, x_1, \ldots)\).
 Einsetzen der Nullstellen \(x_0, x_1, \ldots\) in die 3. Ableitung (Hinreichende Bedingung)
- \(f'''(x_0) \neq 0 \Rightarrow \text{Wendepunkt} \)

<table>
<thead>
<tr>
<th>(x < 0 < x < 1 < x)</th>
<th>(f''(x))</th>
<th>(x < 0 < x < 1 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>WK</td>
<td>Graph</td>
</tr>
<tr>
<td>RK</td>
<td>WP</td>
<td>LK</td>
</tr>
</tbody>
</table>

Funktion
- \(f_1(x) = \frac{1}{12} x^3 - \frac{1}{2} x \)
- \(f_2(x) = \frac{3}{12} x^3 - \frac{3}{2} x + 4(x - 4) \)

Differentialrechnung

Interaktive Inhalte:
Kurvendiskussion
4.2.5 Graph der 2. Ableitung

$f_1(x) = \frac{1}{32}x^3 - \frac{11}{2}$

$f_2(x) = \frac{\frac{1}{2}x^3}{x - 1} - 2$

2. Ableitung $f_1''(x) = \frac{6}{32}x$

2. Ableitung $f_2''(x) = \frac{x^3 - 3x^2 + 3x}{(x - 1)^2}$

sms - streng monoton steigend; smf - streng monoton fallend; VZW - Vorzeichenwechsel; NST - Nullstelle; HP - Hochpunkt (Maximum); TP - Tiefpunkt (Minimum); HT - horizontale Tangente; TEP - Terrassenpunkt; VA - vertikale Asymptote; HA - horizontale Asymptote; LK - Linkskrümmung; RK - Rechtskrümmung; WP - Wendepunkt;

Funktion - 2. Ableitung $f''(x)$

<table>
<thead>
<tr>
<th>Funktion $f(x)$</th>
<th>2. Ableitung $f''(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP</td>
<td>$f''(x) = 0$ mit VZW</td>
</tr>
<tr>
<td>LK</td>
<td>$f''(x) > 0$</td>
</tr>
<tr>
<td>RK</td>
<td>$f''(x) < 0$</td>
</tr>
<tr>
<td>TEP</td>
<td>NST mit VZW</td>
</tr>
<tr>
<td>VA</td>
<td>VA</td>
</tr>
<tr>
<td>HA</td>
<td>HA</td>
</tr>
</tbody>
</table>

Unterstützen Sie meine Arbeit durch eine Spende. 12 https://fersch.de
4.2.6 Ableitung der Grundfunktionen

Polynomfunktion

\[f(x) = x^n \quad f'(x) = nx^{n-1} \]

Die Ableitungen bildet man durch:

Exponent vorziehen und vom Exponenten 1 abziehen

\[f(x) = ax^n \quad f'(x) = nax^{n-1} \]

Konstanter Faktor a bleibt erhalten

\[f(x) = a \quad f'(x) = 0 \]

Bei Summen wird jeder Summand einzeln abgeleitet

Exponentialfunktion Basis e

\[f(x) = e^x \quad f'(x) = e^x \]

\[f(x) = ae^x \quad f'(x) = ae^x \]

\[f(x) = ae^x + b \quad f'(x) = ae^x \]

Exponentialfunktion allgemein

\[f(x) = a^x \quad f'(x) = a^x \ln a \]

\[f(x) = 3^x \quad f'(x) = 3^x \ln 3 \]

Logarithmusfunktion Basis e

\[f(x) = \ln x \quad f'(x) = \frac{1}{x} \]

\[f(x) = a \ln x \quad f'(x) = \frac{a}{x} \]

\[f(x) = a \ln x + b \quad f'(x) = \frac{a}{x} \]

Logarithmusfunktion allgemein

\[f(x) = \log_a x \quad f'(x) = \frac{1}{x \ln a} \]

\[f(x) = \log_4 x \quad f'(x) = \frac{1}{x \ln 4} \]

Trigonometrische Funktionen

\[f(x) = \sin x \quad f'(x) = \cos x \]

\[f(x) = \cos x \quad f'(x) = -\sin x \]

\[f(x) = \tan x \quad f'(x) = \sec^2 x \]

\[f_2(x) = x^3 + 2 \cdot \sin x \quad f_2'(x) = 3 \cdot x^2 + 2 \cdot \cos x \]

Interaktive Inhalte:

Ableitung
4.2.7 Ableitungsregeln

Ableiten von Summen und Differenzen

\[(f(x) \pm g(x))' = f'(x) \pm g'(x)\]

| \(f_1(x) = x^5 + x^4 + x + 3\) |
| \(f'_1(x) = 5x^4 + 4x^3 + 1\) |
| \(f''_1(x) = 20x^3 + 12x^2\) |
| \(f_2(x) = x^3 + 2 \cdot \sin x\) |
| \(f'_2(x) = 3 \cdot x^2 + 2 \cdot \cos x\) |

Ableiten mit konstantem Faktor

\[(c \cdot f(x))' = c \cdot f'(x)\]

| \(f_1(x) = 5e^x + 4 \ln x\) |
| \(f'_1(x) = 5e^x + 4 \frac{1}{x}\) |
| \(f_2(x) = 5 \cos x + 4 \sin x\) |
| \(f'_2(x) = -5 \sin x + 4 \cos x\) |

Kettenregel

\[(f(g(x)))' = f'(g(x)) \cdot g'(x)\]
- äußere Funktion \(f()\) ableiten
- innere Funktion \(g(x)\) unabgeleitet abschreiben
- mit der Ableitung der inneren Funktion \(g(x)\) multiplizieren (nachdifferenzieren)

| \(f_1(x) = e^{2x}\) |
| äußere Funktion: \(e^{(\ldots)}\) innere Funktion: \(2x\) |
| \(f'_1(x) = e^{2x} \cdot 2 = 2e^{2x}\) |
| \(f_2(x) = 3 \sin 5x\) |
| äußere Funktion: \(\sin(\ldots)\) innere Funktion: \(5x\) |
| \(f'_2(x) = 3 \cos 5x \cdot 5 = 15 \cos 5x\) |
| \(f_3(x) = 5e^{3x^3}\) |
| äußere Funktion: \(e\) innere Funktion: \(3x^3\) |
| \(f'_3(x) = 5e^{3x^3} \cdot 9x^2 = 45x^2e^{3x^3}\) |
| \(f_4(x) = (x^3 - x)^7\) |
| äußere Funktion: \((\ldots)^7\) innere Funktion: \(x^3 - x\) |
| \(f'_4(x) = 7(x^3 - x)^6 \cdot (3x^2 - 1) = (21x^2 - 7)(x^3 - x)^6\) |

Produktregel

\[(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)\]
- 1. Faktor \(f(x)\) ableiten
- mal
- 2. Faktor \(g(x)\) unabgeleitet
- plus
- 1. Faktor \(f(x)\) unabgeleitet
- mal
- 2. Faktor \(g(x)\) abgeleitet

| \(f_1(x) = x^2e^x\) |
| \(f'_1(x) = 2x \cdot e^x + x^2 \cdot e^x\) |
| \(f_2(x) = xe^x(2 + x)\) |
| \(f'_2(x) = (x^2 - 6 \cdot x + 2) \cdot e^x\) |
| \(f_3(x) = (2 \cdot x - 6) \cdot e^x + (x^2 - 6 \cdot x + 2) \cdot e^x\) |
| \(f'_3(x) = e^x(2x - 6 + x^2 - 6x + 2)\) |
| \(f_4(x) = e^x(x^2 - 4x - 4)\) |
| \(f'_4(x) = e^x(x^2 - 4x - 4)\) |
Quotientenregel
\[
\left(\frac{f(x)}{g(x)} \right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}
\]

- Zähler f(x) ableiten
- mal
- Nenner g(x) unabgeleitet
- minus
- Zähler f(x) unabgeleitet
- mal
- Nenner g(x) abgeleitet
- durch
- Nenner g(x) im Quadrat

\[
f(x) = \frac{3x - 1}{x^2}, \quad f'(x) = \frac{3 \cdot x^2 - (3x - 1) \cdot 2x}{(x^2)^2}
\]

4.2.8 Tangenten- und Normalengleichung

Tangentengleichung

Tangente an der Stelle \(x_0 \):
\[
g(x) = f'(x_0)(x - x_0) + f(x_0)
\]
oder
\[
y_0 = f(x_0)
\]
\[
m_t = f'(x_0)
\]
Geradengleichung:
\[
y = m \cdot x + t
\]

Tangentengleichung:
\[
y = y_0 - m_t \cdot x_0
\]

Funktion
\[
f(x) = x^2
\]
\[
f'(x) = 2x
\]
Tangente an der Stelle \(x_0 = \frac{1}{2} \)
\[
f\left(\frac{1}{2}\right) = \frac{1}{4}
\]
\[
f'\left(\frac{1}{2}\right) = 1
\]
\[
g(x) = f'(x_0)(x - x_0) + f(x_0)
\]
\[
g(x) = f'\left(\frac{1}{2}\right)(x - \frac{1}{2}) + f\left(\frac{1}{2}\right)
\]
\[
g(x) = 1\left(x - \frac{1}{2}\right) + \frac{1}{4}
\]
\[
g(x) = x - \frac{1}{4} + \frac{1}{4}
\]
\[
g(x) = x - \frac{1}{4}
\]

Normale an der Stelle \(x_0 \):
\[
g(x) = \frac{-1}{f'(x_0)}(x - x_0) + f(x_0)
\]
oder
\[
y_0 = f(x_0)
\]
\[
m_t = f'(x_0)
\]
Steigung der Normalen:
\[
m_n = m_t
\]
Geradengleichung:
\[
y = m \cdot x + t
\]

Funktion
\[
f(x) = x^2
\]
\[
f'(x) = 2x
\]
Normale an der Stelle \(x_0 = \frac{1}{2} \)
\[
f\left(\frac{1}{2}\right) = \frac{1}{4}
\]
\[
f'\left(\frac{1}{2}\right) = 1
\]
\[
g(x) = f'(x_0)(x - x_0) + f(x_0)
\]
\[
g(x) = f'\left(\frac{1}{2}\right)(x - \frac{1}{2}) + f\left(\frac{1}{2}\right)
\]
\[
g(x) = 1\left(x - \frac{1}{2}\right) + \frac{1}{4}
\]
\[
g(x) = x - \frac{1}{4} + \frac{1}{4}
\]
\[
g(x) = x - \frac{1}{4}
\]
4.2.9 Newtonsches Iterationsverfahren

Nullstelle einer Funktion mit dem Newtonschen Iterationsverfahren berechnen.

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

Startwert \(x_0 \) wählen

\[x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \]
\[x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \]
\[\vdots \]

Funktion

\[f(x) = x^2 - 4,000 \]
\[f'(x) = 2,000x \]

Startwert: \(x_0 = 1,000 \)
\[f(1,000) = -3,000 \]
\[f'(1,000) = 2,000 \]

\[x_1 = 1,000 - \frac{f(1,000)}{f'(1,000)} = 1,000 - \frac{-3,000}{2,000} = 2,500 \]

\[x_2 = 2,500 - \frac{f(2,500)}{f'(2,500)} = 2,500 - \frac{-2,250}{5,000} = 2,050 \]

\[x_3 = 2,050 - \frac{f(2,050)}{f'(2,050)} = 2,050 - \frac{0,203}{4,100} = 2,001 \]

Interaktive Inhalte:
- Newtonverfahren
4.3 Integralrechnung

4.3.1 Definition

\[f_1(x) = 0.25x^2 + 1.5x \quad \text{und} \quad f_2(x) = x^3 - 4x \]

Hauptsatz der Integralrechnung

\[F'(x) = f(x) \]

Die Ableitung von \(F(x) \) ist \(f(x) \)

\(F(x) \) ist Stammfunktion von \(f(x) \)

Die Menge aller Stammfunktionen erhält man durch das Addieren einer Konstanten \(c \).

\[f(x) = ax^n \quad \Rightarrow \quad F(x) = \frac{1}{n+1}ax^{n+1} + c \]

Unbestimmtes Integral

\[F(x) = \int f(x) \, dx = F(x) + c \]

Die Stammfunktion zu einer Funktion \(f(x) \) ist das unbestimmte Integral.

\[f_1(x) = x^2 + 2 \]

\[f_1'(x) = 2x \]

\(F_1(x) \) ist Stammfunktion von \(f(x) = 2x \)

\[F_1(x) = x^2 + 3 \]

\[F_1'(x) = 2x \]

\(F_2(x) \) ist Stammfunktion von \(f(x) = 2x \)

\[F_2(x) = x^2 + c \]

\[f_2(x) = 6x^2 \]

\[F_2(x) = \int 6x^2 \, dx = 6 \cdot \frac{1}{3}x^3 + c \]

\[F_2(x) = 2x^3 + c \]

\[F_2'(x) = 2x \]

\[F_2(x) = \int \left(-\frac{1}{2}x^2 + 2x + 5\right) \, dx = -\frac{1}{6}x^3 + x^2 + 5x + c \]

Unterstützen Sie meine Arbeit durch eine Spende. 17 https://fersch.de
Bestimmtes Integral

• Flächenbilanz
 \[A = \int_a^b f(x) \, dx = [F(x)]_a^b = F(b) - F(a) \]
 A ist der Flächeninhalt unter einer Kurve der Funktion \(f(x) \) im Integrationsbereich von a bis b.
 Fläche oberhalb der x-Achse ⇒ \(A > 0 \)
 Fläche unterhalb der x-Achse ⇒ \(A < 0 \)
 Flächen unterhalb und oberhalb der x-Achse ⇒ Summe der Teilflächen

• Fläche zwischen dem Graphen und der x-Achse
 - Nullstellen berechnen
 - Flächen zwischen den Nullstellen berechnen
 - Beträge der Flächen addieren

Funktion
 \[f_1(x) = \frac{1}{4}x^2 + \frac{1}{2}x \]
 Stammfunktion
 \[F(x) = \frac{1}{12}x^3 + \frac{3}{4}x^2 \]
 Fläche unterhalb der x-Achse ⇒ \(A_1 < 0 \)
 \(A_1 = \int_{-2}^{0} \left(\frac{1}{4}x^2 + \frac{1}{2}x \right) \, dx = \left[\frac{1}{12}x^3 + \frac{3}{4}x^2 \right]_{-2}^{0} \)
 = \left(\frac{1}{12} \cdot 0^3 + \frac{3}{4} \cdot 0^2 \right) - \left(\frac{1}{12} \cdot (-2)^3 + \frac{3}{4} \cdot (-2)^2 \right) \)
 = (0) - (-2) = 2

Fläche oberhalb der x-Achse ⇒ \(A_2 > 0 \)
 \(A_2 = \int_{0}^{2} \left(\frac{1}{4}x^2 + \frac{1}{2}x \right) \, dx = \left[\frac{1}{12}x^3 + \frac{3}{4}x^2 \right]_{0}^{2} \)
 = \left(\frac{1}{12} \cdot 2^3 + \frac{3}{4} \cdot 2^2 \right) - \left(\frac{1}{12} \cdot 0^3 + \frac{3}{4} \cdot 0^2 \right) \)
 = 3 - 0 = 3

Fläche unterhalb und oberhalb der x-Achse ⇒ Summe der Teilflächen
 \(A_3 = \int_{-2}^{2} \left(\frac{1}{4}x^2 + \frac{1}{2}x \right) \, dx = \left[\frac{1}{12}x^3 + \frac{3}{4}x^2 \right]_{-2}^{2} \)
 = \left(\frac{1}{12} \cdot 2^3 + \frac{3}{4} \cdot 2^2 \right) - \left(\frac{1}{12} \cdot (-2)^3 + \frac{3}{4} \cdot (-2)^2 \right) \)
 = 3 - (-4) = 7

Nullstellen: \(x_1 = -2 \quad x_2 = 0 \quad x_3 = 2 \)
 \(A_1 = \int_{-2}^{0} (x^3 - 4x) \, dx = \left[\frac{1}{4}x^4 - 2x^2 \right]_{-2}^{0} \)
 = \left(\frac{1}{4} \cdot 0^4 - 2 \cdot 0^2 \right) - \left(\frac{1}{4} \cdot (-2)^4 - 2 \cdot (-2)^2 \right) \)
 = 0 - (-4) = 4
 \(A_2 = \int_{0}^{2} (x^3 - 4x) \, dx = \left[\frac{1}{4}x^4 - 2x^2 \right]_{0}^{2} \)
 = \left(\frac{1}{4} \cdot 2^4 - 2 \cdot 2^2 \right) - \left(\frac{1}{4} \cdot 0^4 - 2 \cdot 0^2 \right) \)
 = 4 - 0 = 4

• Fläche zwischen dem Graphen und der x-Achse:
 \(A = |A_1| + |A_2| = |4| + | -4 | = 8 \)

Integrale

\[F(x) = \int_k^x f(t) \, dt = [F(t)]_k^x = F(x) - F(k) \]
Jede Integrale hat mindestens eine Nullstelle.
\(F(k) = 0 \)

Funktion
 \[F(x) = \int_{-2}^{x} (2t^2 + 4t) \, dt = \left[\frac{2}{3}x^3 + 2t^2 \right]_{-2}^{x} \]
 = \left(\frac{2}{3}x^3 + 2x^2 \right) - \left(\frac{2}{3} \cdot (-2)^3 + 2 \cdot (-2)^2 \right) \)
 = \frac{2}{3}x^3 + 2x^2 - \frac{40}{3} \)
 \(F(-2) = 0 \)
4.3.2 Integration der Grundfunktionen

Polynomfunktion

\[F(x) = \int x^n \, dx = \frac{1}{n+1} \cdot x^{n+1} + c \]

Zum Exponenten 1 addieren, durch den Exponenten dividieren.

\[F(x) = \int x \, dx = \frac{1}{2} x^2 + c \]

\[F(x) = \int ax^n \, dx = a \frac{1}{n+1} \cdot x^{n+1} + c \]

Konstanter Faktor a bleibt erhalten.

\[\int f(x) + g(x) \, dx = \int f(x) \, dx + \int g(x) \, dx \]

Bei Summen wird jeder Summand einzeln integriert.

Exponentialfunktion Basis e

\[F(x) = \int e^x \, dx = e^x + c \]

\[F(x) = \int ae^x \, dx = ae^x + c \]

\[F(x) = \int ae^x + b \, dx = ae^x + bx + c \]

Logarithmusfunktion Basis e

\[F(x) = \int \ln x \, dx = x \ln x - x + c \]

\[F(x) = \int a \ln x \, dx = a(x \ln x - x) + c \]

\[F(x) = \int a \ln x + b \, dx = a(x \ln x - x) + bx + c \]

Rationale Funktion mit linearer Funktion im Nenner

\[F(x) = \int \frac{1}{x} \, dx = \ln |x| + c \]

\[F(x) = \int \frac{1}{ax+b} \, dx = \frac{1}{a} \ln |ax+b| + c \]

Trigonometrische Funktionen

\[F(x) = \int \sin x \, dx = -\cos x + c \]

\[F(x) = \int \cos x \, dx = \sin x + c \]

4.3.3 Integrationsregeln

Integration von Summen und Differenzen

\[\int f(x) \, dx + \int g(x) \, dx = \int f(x) + g(x) \, dx \]
Integration mit konstantem Faktor
\[\int c \cdot f(x) \, dx = c \int f(x) \, dx \]

Integration mit vertauschten Grenzen
\[\int_a^b f(x) \, dx = - \int_b^a f(x) \, dx \]

Integrationsgrenzen zusammenfassen
\[\int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \int_a^c f(x) \, dx \]

Ableitung des Nenners im Zähler
\[\int \frac{f'(x)}{f(x)} \, dx = \ln |f(x)| + c \]
\[\int \frac{2x}{x^2 - 3} \, dx = \ln |x^2 - 3| + c \]
\[\int -\frac{12x^2 + 5}{4x^2 + 5x - 2} \, dx = \ln |-4x^2 + 5x - 2| + c \]

Innere Funktion ist der abgeleitete Faktor
\[\int g'(x) f(g(x)) \, dx = F(x) + c \]
\[\int 2x(x^2 - 3)^4 \, dx = \frac{1}{5} (x^2 - 3)^5 + c \]
\[\int 2xe^{x^2 - 3} \, dx = e^{x^2 - 3} + c \]
\[\int 2x \sin(x^2 - 3) \, dx = -\cos(x^2 - 3) + c \]
\[\int (3x^2 - 6)e^{x^3 - 3x^2} \, dx = e^{x^3 - 3x^2} + c \]

Innere Funktion ist eine lineare Funktion
\[\int f(ax + b) \, dx = \frac{1}{a} F(x) + c \]
\[\int (2x - 6)^4 \, dx = \frac{1}{5} \cdot \frac{1}{2} (2x - 3)^5 + c = \frac{1}{10} (2x - 3)^5 + c \]
\[\int e^{2x - 6} \, dx = \frac{1}{2} e^{2x - 6} + c \]
\[\int \cos(-2x - 6) \, dx = -\frac{1}{2} \sin(-2x - 3) + c \]
\[\int \frac{1}{5x + 3} \, dx = \frac{1}{5} \ln |5x + 3| + c \]
4.3.4 Graph der Stammfunktion

Funktion $f_1(x) = \frac{3}{12}x^2 - 1.5$

Stammfunktion $F_1(x) = \frac{1}{32}x^3 - 1.5x + c$

Funktion $f_3(x) = \frac{x^3 - 1.5x^2}{(x-1)^2}$

Stammfunktion $F_2(x) = \frac{0.5x^3}{x-1} + c$

sms - streng monoton steigend; smf - streng monoton fallend; VZW - Vorzeichenwechsel; NST - Nullstelle; HP - Hochpunkt (Maximum); TP - Tiefpunkt (Minimum); HT - horizontale Tangente; TEP - Terrassenpunkt; VA - vertikale Asymptote; HA - horizontale Asymptote; LK - Links-krümmung; RK - Rechts-krümmung; WP - Wendepunkt; PS - Punktsymmetrie zum Ursprung; AS - Achsensymmetrie zur y-Achse

Zu jeder Funktion $f(x)$ gibt es eine Menge von Stammfunktionen $F(x)$, die um c in y-Richtung verschoben sind.

<table>
<thead>
<tr>
<th>Funktion $f(x)$</th>
<th>Stammfunktion $F(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NST $f(x) = 0$</td>
<td>Extremwert (HT)</td>
</tr>
<tr>
<td>VZW von + nach -</td>
<td>HP</td>
</tr>
<tr>
<td>VZW von - nach +</td>
<td>TP</td>
</tr>
<tr>
<td>NST ohne VZW</td>
<td>TEP</td>
</tr>
<tr>
<td>Extremwert</td>
<td></td>
</tr>
<tr>
<td>$f(x) > 0$ (positiv)</td>
<td>sms</td>
</tr>
<tr>
<td>$f(x) < 0$ (negativ)</td>
<td>smf</td>
</tr>
<tr>
<td>PS</td>
<td>AS</td>
</tr>
<tr>
<td>AS</td>
<td></td>
</tr>
</tbody>
</table>

Interaktive Inhalte:
- Funktionsgraph
- Wertetable

Unterstützen Sie meine Arbeit durch eine Spende. https://fersch.de
Kurvendiskussion

4.4 Ganzrationale Funktion

4.4.1 Ganzrationale Funktion

[f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x + a_0]

oder

[f(x) = a x^n + b x^{n-1} + c x^{n-2} + \ldots]

Die höchste Potenz (n) gibt den Grad der Polynomfunktion an.

- Summendarstellung der Polynomfunktion
- Produktarstellung (faktorisierte Form) der Polynomfunktion

Ist der Grad des Polynoms gleich der Anzahl der (reellen) Nullstellen, kann man die Funktion in faktorisierten Form schreiben.

f(x) = a(x - x_1)(x - x_2)(x - x_3)...

Nullstellen: x_1, x_2, x_3...

Linearfaktoren: (x - x_1), (x - x_2)...

a = Koeffizient der höchsten Potenz

Grad 1: Lineare Funktion

f(x) = ax + b

Grad 2: Quadratische Funktion

f(x) = ax^2 + bx + c \quad f(x) = a(x - x_1)(x - x_2)

Grad 3: Kubische Funktion

f(x) = ax^3 + bx^2 + cx + d

f(x) = a(x - x_1)(x - x_2)(x - x_3)

Grad 4: Biquadratische Funktionen

f(x) = ax^4 + bx^3 + cx^2 + dx + e

f(x) = a(x - x_1)(x - x_2)(x - x_3)(x - x_4)

Grad 5:

f(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f

f(x) = a(x - x_1)(x - x_2)(x - x_3)(x - x_4)(x - x_5)

Formen der Polynomfunktion - ganzrationale Funktion

- Summen- in Produktdarstellung:

 f_1(x) = -1\frac{1}{5} x^2 + 5x = -1\frac{1}{5} x(x - 4)

 f_2(x) = -x^3 + 3 \cdot x + 2 = -(x + 1)^2(x - 2)

 f_3(x) = \frac{1}{10} x^3 - 1\frac{1}{2} x = 0

 x(\frac{1}{10} x^2 - 1\frac{3}{8}) = 0 \Rightarrow x_1 = 0 \quad \lor \quad \frac{1}{10} x^2 - 1\frac{3}{8} = 0

 x_2 = 4 \quad x_3 = -4

- Grad der Funktion = Anzahl der Nullstellen = 3

 Faktorisierte Form:

 f_4(x) = 0, 1x(x + 4)(x - 4)

 f_5(x) = \frac{1}{20} x^4 - x^2 + 3\frac{1}{2} = 0

 u = x^2 \quad u^2 = x^4

 \frac{1}{20} u^2 - 1u + 3\frac{1}{2} = 0

 u_{1/2} = \pm \sqrt{\left(-1\right)^2 - 4 \cdot \frac{1}{20} \cdot 3\frac{1}{2}}

 u_1 = 16 \quad u_2 = 4

 x^2 = 16

 x = \pm \sqrt{16}

 x_1 = 4 \quad x_2 = -4

 x_3 = 2 \quad x_4 = -2

- Produkt- in Summendarstellung:

 f_8(x) = (x - 2)(x - 2)(x - 2) = (x - 2)^3

 f_9(x) = x^3 - 6x^2 - 12x = -8

 f_5(x) = 0, 1x(x + 4)(x - 4) = 0, 1x^3 - 1\frac{7}{2}x

 f_6(x) = (x + 1)^3 = x^3 + 2x^2 + 4x + 1

 f_7(x) = 0, 05(x^2 - 4)(x^2 - 16) = 0, 05x^4 - x^2 + \frac{16}{5}

 f_8(x) = x^2(x^2 - 4) = x^4 - 4x^2
Definitions- und Wertebereich

- **Definitionsbereich** \(\mathbb{D} = \mathbb{R} \)
- **Wertebereich**
 - höchster Exponent ungerade:
 \(\mathbb{W} = \mathbb{R} \)
 - höchster Exponent gerade:
 \(\mathbb{W} = [\text{absoluter Tiefpunkt}; \infty[\)
 \(\mathbb{W} = [\infty; \text{absoluter Hochpunkt}] \)

\[f_1(x) = -1 \frac{1}{4} x^2 + 5x \]
absoluter Hochpunkt: \((2/5)\)
höchster Exponent: 2 (gerade Zahl)
\(\mathbb{D} = \mathbb{R} \)
\(\mathbb{W} = [\infty; 5] \)

\[f_2(x) = -x^3 + 3 \cdot x + 2 \]
höchster Exponent: 3 (ungerade Zahl)
\(\mathbb{D} = \mathbb{R} \)
\(\mathbb{W} = \mathbb{R} \)

\[f_3(x) = 0,1 x^4 - 1 \frac{1}{4} x \]
\(\mathbb{D} = \mathbb{R} \)
absoluter Tiefpunkt aus der Kurvendiskussion:
\(\mathbb{D} = \mathbb{R} \)
\(\mathbb{W} = [-1 \frac{5}{7}; \infty[\)

Symmetrie

- Punktsymmetrie zum Ursprung:
 \(f(-x) = -f(x) \)
 \(f(x) \) hat nur ungerade Exponenten

- Achssensymmetrie zur y-Achse:
 \(f(-x) = f(x) \)
 \(f(x) \) hat nur gerade Exponenten

\[f_4(x) = 0,1 \cdot x^3 - 1 \frac{1}{2} x \]
keine Symmetrie zur y-Achse und zum Ursprung
\(f_4(-x) = 0,1 (-x)^3 - 1 \frac{1}{2} \cdot (-x) \)
\(f_4(-x) = - (0,1 \cdot x^3 - 1 \frac{1}{2} \cdot x) \)
\(f_4(-x) = -f(x) \Rightarrow \text{Symmetrie zum Ursprung} \)
\(f_7(x) = 0,05 x^4 - x^2 + \frac{16}{3} \)
\(f_7(-x) = \frac{1}{20} \cdot (-x)^4 - 1 \cdot (-x)^2 + 3 \frac{1}{5} \)
\(f_7(-x) = \frac{1}{20} x^4 - 1 \cdot x^2 + 3 \frac{1}{5} \)
\(f_7(-x) = f(x) \Rightarrow \text{Symmetrie zur y-Achse} \)
Schnittpunkte mit der x-Achse - Nullstellen

- Funktionsterm gleich Null setzen und die Gleichung lösen.
 \(f(x) = ae^x + be^{x-1} + ce^{x-2}... = 0 \)
- höchster Exponent ungerade
 \(1 \leq \text{Anzahl der Nullstellen} \leq \text{Grad des Polynoms} \)
- höchster Exponent gerade
 \(0 \leq \text{Anzahl der Nullstellen} \leq \text{Grad des Polynoms} \)
- Faktorisierte Polynomfunktion

Nullstellen aus faktorisierten Polynom ablesen.
\(a(x - x_1)(x - x_2)(x - x_3)... = 0 \)

Nullstellen: \(x_1, x_2, x_3... \)

Nullstellen aus faktorisierten Polynom ablesen.
\(f_3(x) = (x - 2)^3 \)
\(x_{23} = 2 \)
3-fache Nullstelle
\(f_5(x) = -0,03(x + 3)^2(x - 6) \)
\(x_1 = -3 \)
2-fache Nullstelle
\(x_{23} = 6 \)
1-fache Nullstelle

Funktionsterm gleich Null setzen.
\(f_1(x) = -1 \frac{1}{4}x^2 + 5x = 0 \)
\(x(-\frac{1}{4}x + 5) = 0 \Rightarrow x = 0 \quad \lor \quad -\frac{1}{4}x + 5 = 0 \)
\(-\frac{1}{4}x + 5 = 0 \quad \lor \quad x = 4 \)
\(x_1 = 0 \quad x_2 = 4 \)

Faktorisierte Form:
\(f_1(x) = -\frac{1}{4}x(x - 4) \)

Nullstellen für Polynomdivision erraten: \(x_1 = -1 \)
\(-(-x^3 + 3x + 2) : (x + 1) = -x^2 + x + 2 \)

\[
\begin{array}{c|c|c|c|c|c}
\hline
x^2 & +3x & +2 \\
-(&x^2 + x) & \\
\hline
2x & +2 \\
-(&2x + 2) & \\
\hline
0 & \\
\hline
\end{array}
\]

\(-x^2 + x + 2 = 0 \)
\(x_{1/2} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot (-1) \cdot 2}}{2 \cdot (-1)} \quad \lor \quad x_2 = -1 \quad x_3 = 2 \)

Faktorisierte Form:
\(f_2(x) = -(x + 1)(x - 2) \)

\(f_6(x) = \frac{1}{10}x^3 - 1 \frac{1}{2}x = 0 \)
\(x(\frac{1}{10}x^2 - 1 \frac{3}{2}) = 0 \Rightarrow x_1 = 0 \quad \lor \quad \frac{1}{10}x^2 - 1 \frac{3}{2} = 0 \)
\(x_2 = 4 \quad x_3 = -4 \)

Grad der Funktion = Anzahl der Nullstellen = 3

Faktorisierte Form:
\(f_6(x) = 0, 1x(x + 4)(x - 4) \)
\(f_7(x) = \frac{1}{10}x^4 - x^3 + 3 \frac{1}{2} = 0 \)
\(u = x^2 \quad u^2 = x^4 \quad \frac{1}{10}u^2 - 1u + 3 \frac{1}{2} = 0 \)
\(u_{1/2} = \frac{+1 \pm \sqrt{(-1)^2 - 4 \cdot \frac{1}{10} \cdot 3 \frac{1}{2}}}{2 \cdot \frac{1}{10}} \)
\(u_1 = 16 \quad u_2 = 4 \quad \lor \quad x^2 = 16 \quad x = \pm\sqrt{16} \quad x_1 = 4 \quad x_2 = -4 \)
\(x^2 = 4 \quad x = \pm\sqrt{4} \quad x_3 = 2 \quad x_4 = -2 \)

Faktorisierte Form:
\(f_7(x) = \frac{1}{10}(x + 4)(x - 4) (x + 2)(x - 2) \)
Graph oberhalb/unterhalb der x-Achse

Bei ganzrationalen Funktionen kann sich das Vorzeichen nur an den Nullstellen ändern. Einen beliebigen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen des Funktionswertes in die Tabelle eintragen.

Vorzeichenstabelle mit f(x)

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
<th>Vorzeichen</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>+</td>
<td>positive</td>
</tr>
<tr>
<td>x</td>
<td>-</td>
<td>negative</td>
</tr>
</tbody>
</table>

+ f(x)>0 Graph oberhalb der x-Achse
- f(x)<0 Graph unterhalb der x-Achse

Grenzwert - Verhalten im Unendlichen

\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \]

\[\lim_{x \to \infty} f(x) = \pm \infty \]

\[\lim_{x \to -\infty} f(x) = \pm \infty \]

Glied mit der höchsten Potenz: \\

Grenzwert gegen plus Unendlich

<table>
<thead>
<tr>
<th>Grad</th>
<th>Grenzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>gerade</td>
<td>(\lim_{x \to \infty} a_n \cdot \infty^n = \infty)</td>
</tr>
<tr>
<td>ungerade</td>
<td>(\lim_{x \to -\infty} a_n \cdot \infty^n = \infty)</td>
</tr>
</tbody>
</table>

Grenzwert gegen minus Unendlich

<table>
<thead>
<tr>
<th>Grad</th>
<th>Grenzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>gerade</td>
<td>(\lim_{x \to -\infty} a_n \cdot (-\infty)^n = \infty)</td>
</tr>
<tr>
<td>ungerade</td>
<td>(\lim_{x \to -\infty} a_n \cdot (-\infty)^n = \infty)</td>
</tr>
</tbody>
</table>

| \(f_1(x) = -1 \frac{1}{2} x^2 + 5x \) |
| \(x < 0 \) | \(x < 4 \) |
| \(f(x) \) | \(-\) | \(+\) |

\(x \in [0; 4] \) \(f(x) > 0 \) oberhalb der x-Achse

\(x \in [-\infty; 0[\cup]4; \infty[\) \(f(x) < 0 \) unterhalb der x-Achse

\[f_2(x) = -x^3 + 3 \cdot x + 2 \]

\(x \in]-\infty; -1[\cup]-1; 2[\) \(f(x) > 0 \) oberhalb der x-Achse

\(x \in 2; \infty[\) \(f(x) < 0 \) unterhalb der x-Achse

Faktorisierte Form:

\(f_2(x) = 0, 1x(x + 4)(x - 4) \)

Nullstellen: \(x_1 = 0 \) \(x_2 = 4 \) \(x_3 = -4 \)

\(-5 < -4 \quad f_2(-5) = -4,5 \)

\[\lim_{x \to -\infty} f_2(x) = 0 \]

\[\lim_{x \to 2} f_2(x) = 0 \]

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>

\(x \in]-\infty; -4[\cup]4; \infty[\) \(f(x) > 0 \) oberhalb der x-Achse

\(x \in [-\infty; -4[\cup]0; 4[\) \(f(x) < 0 \) unterhalb der x-Achse

\[f_1(x) = -1 \frac{1}{2} x^2 + 5x \]

Glied mit der höchsten Potenz: \

\(\lim_{x \to -\infty} f_1(x) = [-1 \frac{1}{2} \cdot \infty^2] = -\infty \)

\(\lim_{x \to 2} f_1(x) = [-1 \frac{1}{2} \cdot (-\infty)^2] = -\infty \)

\[f_2(x) = -x^3 + 3 \cdot x + 2 \]

Glied mit der höchsten Potenz: \

\(\lim_{x \to -\infty} f_2(x) = [-1 \cdot \infty^3] = -\infty \)

\(\lim_{x \to 2} f_2(x) = [-1 \cdot (-\infty)^3] = \infty \)
Ableitung

\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x^1 + a_0 \]

Die Ableitungen bildet man durch: Exponent vorziehen und von Exponenten 1 abziehen.

Die erste Ableitung \(f'(x) \) gibt die Steigung der Funktion an der Stelle \(x \) an.

Die zweite Ableitung \(f''(x) \) gibt die Krümmung der Funktion an der Stelle \(x \) an.

\[f'(x) = a_n \cdot n \cdot x^{n-1} + a_{n-1} \cdot (n-1) \cdot x^{n-2} + \ldots + a_2 \cdot 2 \cdot x^1 + a_1 \]

\[f(x) = a_n x^n \quad f'(x) = n a_n x^{n-1} \]

Grad 1: Lineare Funktion
\[f(x) = ax + b \quad f'(x) = a \]

Grad 2: Quadratische Funktion
\[f(x) = ax^2 + bx + c \quad f'(x) = 2ax + b \]

Grad 3: Kubische Funktion
\[f(x) = ax^3 + bx^2 + cx + d \quad f'(x) = 3ax^2 + 2bx + c \]

Grad 4: Biquadratische Funktionen
\[f(x) = ax^4 + bx^3 + cx^2 + dx + e \]
\[f'(x) = 4ax^3 + 3bx^2 + 2cx + d \]

Extremwerte und die 2. Ableitung

In den Extremwerten hat \(f(x) \) eine horizontale Tangente (HT).

- \(f'(x) = 0 \) (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen \((x_0, x_1, \ldots)\).

In diesen Nullstellen \((x_0, x_1, \ldots)\) kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Einsetzen der Nullstellen \(x_0, x_1, \ldots \) in die 2. Ableitung (Hinreichende Bedingung)

- \(f''(x_0) > 0(LK) \Rightarrow \) Tiefpunkt (Minimum) bei \(x_0 \)
- \(f''(x_0) < 0(RK) \Rightarrow \) Hochpunkt (Maximum) bei \(x_0 \)
- \(f''(x_0) = 0 \land f'''(x_0) \neq 0 \Rightarrow \) Terrassenpunkt

\[f_1(x) = -1/2 x^2 + 5x = -1/2 x(x - 4) \]
\[f_1'(x) = -2/3 x + 5 \]
\[f_1''(x) = -2/3 \]
\[f_1'''(x) = 0 \]
\[f_2(x) = -x^2 + 3x + 2 = -(x + 1)^2(x - 2) \]
\[f_2'(x) = -3x^2 + 3 = -3(x + 1)(x - 1) \]
\[f_2''(x) = -6x = -6x \]
\[f_2'''(x) = -6 \]
Extremwerte und das Monotonieverhalten

Extremwerte sind Hochpunkte (Maxima) bzw. Tiefpunkte (Minima) der Funktion. In den Extremwerten hat f(x) eine horizontale Tangente (HT).

- \(f'(x) = 0 \) (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen \((x_0, x_1..) \).

In diesen Nullstellen \((x_0, x_1..) \) kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Zur Unterscheidung werden die Nullstellen in die Vorzeichenraster eintragen. Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von \(f'(x) \) in die Tabelle eintragen. (Hinreichende Bedingung)

- Hochpunkt (HP)

Monotonieverhalten ändert sich von streng monoton steigend (sms) nach streng monoton fallend (smf).

Vorzeichenwechsel (VZW) der 1. Ableitung \(f'(x) \) von Plus nach Minus.

<table>
<thead>
<tr>
<th>(x < x_1)</th>
<th>(x_1 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
</tr>
</tbody>
</table>

Graph sms HP smf

- Tiefpunkt (TP)

Monotonieverhalten ändert sich von streng monoton fallend (smf) nach streng monoton steigend (sms).

Vorzeichenwechsel (VZW) der 1. Ableitung \(f'(x) \) von Minus nach Plus.

<table>
<thead>
<tr>
<th>(x < x_1)</th>
<th>(x_1 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>−</td>
</tr>
</tbody>
</table>

Graph smf TP sms

- Terrassenpunkt (TEP)

<table>
<thead>
<tr>
<th>(x < x_1)</th>
<th>(x_1 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>−</td>
</tr>
</tbody>
</table>

Graph sms TEP sms Graph smf TEP smf

Die Ränder des Definitionsbe reichs (Definitions lücken) müssen in die Tabelle mit eingetragen werden.

Wendepunkte und 3. Ableitung

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.

- \(f''(x) = 0 \) (Notwendige Bedingung)

Die Nullstellen der 2. Ableitung bestimmen \((x_0, x_1..) \).

Einsetzen der Nullstellen \(x_0, x_1.. \) in die 3. Ableitung (Hinreichende Bedingung)

- \(f'''(x_0) \neq 0 \Rightarrow \) Wendepunkt
Wendepunkte und das Krümmungsverhalten

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.
- $f''(x) = 0$ (Notwendige Bedingung)

Die Nullstellen der 2. Ableitung bestimmen (x_0, x_1, \ldots). Zur Unterscheidung zwischen Wendepunkt und Flachpunkt werden die Nullstellen in die Vorzeichentabelle eintragen. (Hinreichende Bedingung)

Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von $f''(x)$ in die Tabelle eintragen.
- Wendepunkt (WP)

Das Krümmungsverhalten ändert sich von rechtsgekrümmt (RK) nach linksgekrümmt (LK) oder von linksgekrümmt nach rechtsgkrümmt.

<table>
<thead>
<tr>
<th>$x < x_0$</th>
<th>$x_0 < x$</th>
<th>$x < x_1$</th>
<th>$x_1 < x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f''(x)$</td>
<td>+</td>
<td>$f''(x)$</td>
<td>$-0+$</td>
</tr>
</tbody>
</table>

Graph LK WP RK Graph RK WP LK

- Flachpunkt (FP)

Kein Vorzeichenwechsel (VZW) der 2. Ableitung

$\frac{f''(x)}{(x_0)}$ + 0 + $f''(x)$ = 0 = $+$

Graph LK FP RK Graph RK FP RK

Die Ränder des Definitionsbereichs (Definitiounslecken) müssen in die Tabelle mit eingetragen werden.

Stammfunktion von $f(x)$

Stammfunktionen bildet man durch: zum Exponent 1 addieren, durch den Exponenten dividieren. $f(x) = ax^n$ $F(x) = \frac{1}{n+1}ax^{n+1} + c$

Unbestimmtes Integral: $F(x) = \int f(x) \, dx = F(x) + c$

Bestimmtes Integral

$A = \int_{x_1}^{x_2} f(x) \, dx = [F(x)]_{x_1}^{x_2} = F(x_2) - F(x_1)$

$A_1 = \int_{0}^{1} \left(-\frac{1}{2}x^2 + 5x\right) \, dx = \left[-\frac{1}{6}x^3 + 2\frac{1}{3}x^2\right]_{0}$

$= \left(-\frac{1}{6} \cdot \frac{1}{2} + 2\frac{1}{3} \cdot \frac{1}{2}\right)^2 - \left(-\frac{1}{6} \cdot 0^3 + 2\frac{1}{3} \cdot 0^2\right)^2$

$= (13\frac{1}{2}) = (0) = 13\frac{1}{2}$

$A_2 = \int_{1}^{2} \left(-x^3 + 3x + 2\right) \, dx = \left[-\frac{1}{4}x^4 + 1\frac{1}{2}x^2 + 2x\right]_{1}$

$= \left(-\frac{1}{4} \cdot 2^4 + 1\frac{1}{2} \cdot 2^2 + 2 \cdot 2\right) - \left(-\frac{1}{4} \cdot (-1)^4 + 1\frac{1}{2} \cdot (-1)^2 + 2 \cdot (-1)\right)$

$= (6) - \left(-\frac{3}{4}\right) = 6\frac{3}{4}$

Interaktive Inhalte:

Funktionsgraph | Wertetabelle | hier klicken
4.4.2 Gebrochen rationale Funktion

\[f_1(x) = \frac{1}{x+2} \]
\[x = -2 \]
\[y = 0 \]

\[f_2(x) = \frac{x^2+2x+1}{x^2-4} \]
\[x = -2 \]
\[y = \frac{1}{2} \]
\[x = 2 \]
\[y = x+1 \frac{1}{2} \]

\[f_3(x) = \frac{x^2-4}{x-1 \frac{1}{2}} \]
\[x = 1 \frac{1}{2} \]

Formen der gebrochen rationalen Funktion

| Summendarstellung der gebrochen rationale Funktion: |
|\(f(x) = \frac{Z(x)}{N(x)} \) |
|\(a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_2 x^2 + a_1 x + a_0 \) |
|\(b_m x^m + b_{m-1} x^{m-1} + b_{m-2} x^{m-2} + \ldots + b_2 x^2 + b_1 x + b_0 \) |
| Zählerpolynom vom Grad n: |
|\(Z(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_2 x^2 + a_1 x + a_0 \) |
| Nennerpolynom vom Grad m: |
|\(N(x) = b_m x^m + b_{m-1} x^{m-1} + b_{m-2} x^{m-2} + \ldots + b_2 x^2 + b_1 x + b_0 \) |

Produktdarstellung (faktorisierte Form) der gebrochen rationale Funktion:

\[f(x) = a \frac{(x-z_1)(x-z_2)(x-z_3) \ldots}{(x-n_1)(x-n_2)(x-n_3) \ldots} \]
\(z_1, z_2, z_3 \ldots \) Nullstellen des Zählers
\(n_1, n_2, n_3 \ldots \) Nullstellen des Nenners

Definitions- und Wertebereich

| Definitionsbereich: |
| Nullstellen des Nennerpolynoms ausschließen. |
| Nennerpolynom: \(N(x) = 0 \) |
| n_1, n_2, n_3 \ldots Nullstellen des Nenners (Definitionsücken) |
| \(\mathbb{D} = \mathbb{R} \setminus \{n_0, n_1, n_2..\} \) |
| (siehe Algebra - Gleichungen) |
| Wertebereich: |
| Bestimmung nur nach Kurvendiskussion möglich. |

Symmetrie

| Punktsymmetrie zum Ursprung: |
| \(f(-x) = -f(x) \) |
| Achsensymmetrie zur y-Achse: |
| \(f(-x) = f(x) \) |
Schnittpunkte mit der x-Achse - Nullstellen

Zählerpolynom gleich Null setzen.
Zählerpolynom: \(Z(x) = 0 \)
z₁, z₂, z₃... Nullstellen des Zählers
(siehe Algebra - Gleichungen)

Verhalten im Unendlichen - Grenzwert - Asymptoten

- Zählergrad > Nennergrad
 \[
 \lim_{x \to \pm \infty} f(x) = \pm \infty
 \]
 [Grenzwert gegen plus Unendlich]

- Zählergrad = Nennergrad+1
 \[
 \lim_{x \to \pm \infty} f(x) = \pm \infty
 \]
 Polynomdivision - schräge Asymptote

- Zählergrad = Nennergrad
 \[
 \lim_{x \to \pm \infty} f(x) = a_n/b_m
 \]
 horizontale Asymptote: \(y = \frac{a_n}{b_m} \)

- Zählergrad < Nennergrad
 \[
 \lim_{x \to \pm \infty} f(x) = 0
 \]
 horizontale Asymptote: \(y = 0 \)

\[
f_2(x) = \frac{x^2 + 2x + 1}{x^2 - 4}
\]
Zählerpolynom gleich Null setzen:
x² + 2x + 1 = 0
\[
x_{1/2} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot 1}}{2}
\]
x₁/₂ = \(\frac{-2 \pm \sqrt{0}}{2} \)
x₁ = -1; 2-fache Nullstelle

\[
f_3(x) = x^2 - 4
\]
Polynomdivision:
\[
\begin{array}{c|cc}
 \quad & \frac{1}{x} & -4 \\
\hline
x^2 & 1 & \frac{1}{2} \\
-1/2x & 1 & \frac{1}{4} \\
\hline
0 & -1/2 & 0 \\
\end{array}
\]
\[
f_3(x) = x + 1 + \frac{-1/2}{x - 1/2}
\]
Schräge Asymptote: \(y = x + 1 \frac{1}{2} \)
Verhalten an den Definitionslichten - Grenzwert - Asymptoten

\[\mathbb{D} = \mathbb{R} \setminus \{ x_0, x_1, \ldots \} \]
\[x_0, x_1, \ldots \text{ sind Definitionslichten von } f(x) \]
\[\lim_{x \to x_0} f(x) = \infty \Rightarrow \]
Vertikale Asymptote: \(x = x_0 \)

\[\lim_{x \to -2^+} \frac{1}{x + 2} = \infty \]
\[\lim_{x \to -2^-} \frac{1}{x + 2} = -\infty \]
Vertikale Asymptote (Polstelle): \(x = -2 \)

Ableitung

Die Ableitungen bildet man durch die Quotientenregel:
\[f'(x) = \frac{Z'(x) \cdot N(x) - Z(x) \cdot N'(x)}{(N(x))^2} \]
Die erste Ableitung \(f'(x) \) gibt die Steigung der Funktion an der Stelle \(x \) an.
Die zweite Ableitung \(f''(x) \) gibt die Krümmung der Funktion an der Stelle \(x \) an.

\[f'_1(x) = \frac{0(x + 2) - 1}{(x + 2)^2} = \frac{0 - 1}{(x + 2)^2} = \frac{-1}{(x + 2)^2} \]
\[f''_1(x) = \frac{0(x^2 + 4x + 4) - (-1)(2x + 4)}{(x^2 + 4x + 4)^2} = \frac{0 - (-2x - 4)}{(x^2 + 4x + 4)^2} = \frac{2x + 4}{(x^2 + 4x + 4)^2} = \frac{2(x + 2)}{(x + 2)^4} = \frac{2}{(x + 2)^2} \]
\[f_2(x) = \frac{x^2 + 2x + 1}{x^2 - 4} = \frac{(x + 1)^2}{(x - 2)(x + 2)} = \frac{(x + 1)^2}{(x - 2)(x + 2)} \]
\[f'_2(x) = \frac{(x + 1)(2x + 4) - (x^2 + 2x + 1)2x}{(x^2 - 4)^2} = \frac{-2x^2 + 10x + 8}{(x^2 - 4)^2} = -2(x^2 + 5x + 4) \]

Extremwerte und die 2. Ableitung

In den Extremwerten hat \(f(x) \) eine horizontale Tangente (HT).
- \(f'(x) = 0 \) (Notwendige Bedingung)
Die Nullstellen der 1. Ableitung bestimmen \((x_0, x_1, \ldots)\).

In diesen Nullstellen \((x_0, x_1, \ldots)\) kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Einsetzen der Nullstellen \(x_0, x_1, \ldots \) in die 2. Ableitung (Hinreichende Bedingung)
- \(f''(x_0) > 0 \) (LK) \(\Rightarrow \) Tiefpunkt (Minimum) bei \(x_0 \)
- \(f''(x_0) < 0 \) (RK) \(\Rightarrow \) Hochpunkt (Maximum) bei \(x_0 \)
- \(f''(x_0) = 0 \land f'''(x_0) \neq 0 \) \(\Rightarrow \) Terrassenpunkt

\[f_2(x) = \frac{-2x^2 - 10x - 8}{x^4 - 8x^2 + 16} = 0 \]
\[-2x^2 - 10x - 8 = 0 \]
\[-10 \pm \sqrt{(-10)^2 - 4 \cdot (-2) \cdot (-8)} \]
\[2 \cdot (-2) \]
\[x_{1/2} = -\frac{10 \pm \sqrt{36}}{4} \]
\[x_{1/2} = -\frac{10 \pm 6}{4} \]
\[x_1 = -\frac{10 \pm 6}{4} \]
\[x_1 = -2 \]
\[x_2 = -1 \]
\[f''(-4) = 6 > 0 \Rightarrow \text{Tiefpunkt: } (-4/2, -5) \]
\[f''(-1) = -6 \]
\[f''(-1) < 0 \Rightarrow \text{Hochpunkt: } (-1/0) \]
Extremwerte und das Monotonieverhalten

Extremwerte sind Hochpunkte (Maxima) bzw. Tiefpunkte (Minima) der Funktion. In den Extremwerten hat \(f(x) \) eine horizontale Tangente (HT).

- \(f'(x) = 0 \) (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen \((x_0, x_1,...)\).

In diesen Nullstellen \((x_0, x_1,...)\) kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Zur Unterscheidung werden die Nullstellen in die Vorzeichen-Tabelle eintragen. Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von \(f'(x) \) in die Tabelle eintragen. (Hinreichende Bedingung)

- Hochpunkt (HP)

Monotonieverhalten ändert sich von streng monoton steigend (sms) nach streng monoton fallend (smf).

Vorzeichenwechsel (VZW) der 1. Ableitung \(f'(x) \) von Plus nach Minus.

\[
\begin{array}{c|c|c|c}
 x & x_1 & < x \\
 \hline
 f'(x) & + & 0 & - \\
\end{array}
\]

Graph: sms; HP; smf

- Tiefpunkt (TP)

Monotonieverhalten ändert sich von streng monoton fallend (smf) nach streng monoton steigend (sms).

Vorzeichenwechsel (VZW) der 1. Ableitung \(f'(x) \) von Minus nach Plus.

\[
\begin{array}{c|c|c|c}
 x & x_1 & < x \\
 \hline
 f'(x) & - & 0 & + \\
\end{array}
\]

Graph: smf; TP; sms

- Terrassenpunkt (TEP)

\[
\begin{array}{c|c|c|c}
 x & x_1 & < x & x & x_1 & < x \\
 \hline
 f'(x) & + & 0 & - & f'(x) & - & 0 & - \\
\end{array}
\]

Graph: sms; TEP; sms; Graph: smf; TEP; smf

Die Ränder des Definitionsreichs (Definitionsliicken) müssen in die Tabelle mit eingetragen werden.

Wendepunkt und die 3. Ableitung

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.

- \(f''(x) = 0 \) (Notwendige Bedingung)

Die Nullstellen der 2. Ableitung bestimmen \((x_0, x_1,...)\).

Einsetzen der Nullstellen \(x_0, x_1,...\) in die 3. Ableitung (Hinreichende Bedingung)

- \(f'''(x_0) \neq 0 \Rightarrow \text{Wendepunkt} \)
Wendepunkte und das Krümmungsverhalten

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.

- \(f''(x) = 0 \) (Notwendige Bedingung)

Die Nullstellen der 2. Ableitung bestimmen \((x_0, x_1, \ldots)\). Zur Unterscheidung zwischen Wendepunkt und Flachpunkt werden die Nullstellen in die Vorzeichenetabelle eintragen. (Hinreichende Bedingung) Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von \(f''(x) \) in die Tabelle eintragen.

- Wendepunkt (WP)
 Das Krümmungsverhalten ändert sich von rechtsgekrümmt (RK) nach linksgekrümmt (LK) oder von linksgekrümmt nach rechtsgekrümmt.

<table>
<thead>
<tr>
<th>(f''(x))</th>
<th>(x < x_1)</th>
<th>(x_1 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>LK</td>
<td>WP</td>
</tr>
<tr>
<td>RK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Flachpunkt (FP)
 Kein Vorzeichenwechsel (VZW) der 2. Ableitung.

<table>
<thead>
<tr>
<th>(f''(x))</th>
<th>(x < x_1)</th>
<th>(x_1 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>LK</td>
<td>FP</td>
</tr>
<tr>
<td>LK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Ränder des Definitionsbereichs (Definitionslücken) müssen in die Tabelle mit eingetragen werden.

• Krümmung

\[
 f''(x) = \frac{2}{(x+2)^3} \\
 Zehler = 0 \\
 keine Lösung
\]

Nullstelle des Nenners aus f(x) übernehmen
\[x_3 = -2; \quad 1\text{-fache Nullstelle} \]

<table>
<thead>
<tr>
<th>(f''(x))</th>
<th>(x < -2)</th>
<th>(-2 < x)</th>
</tr>
</thead>
</table>
| \[x \in] -2; \infty[\] & \[f''(x) > 0 \] & linksgekrümmt

\[x \in] -\infty; -2[\] & \[f''(x) < 0 \] & rechtsgekrümmt

Interaktive Inhalte:
- Funktionsgraph
- Wertetable
- hier klicken

4.4.3 Exponentialfunktion (Basis e)

\[
 f_1(x) = e^x \\
 f_2(x) = 2 \cdot e^{x+1} - 2 \\
 f_3(x) = e^{\frac{1}{2} \cdot x - 1} + 1
\]

\[
 f_4(x) = e^{-x} \\
 f_5(x) = -2 \cdot e^{-x} + 3
\]
Formen der Exponentialfunktion

Exponentialfunktion
\[f(x) = e^x \]

Allgemeine Exponentialfunktion
\[f(x) = ae^{b(x-c)} + d \]
(siehe Funktionen - Exponentialfunktion)

Definitions- und Wertebereich

\[f(x) = e^x \]
\[D = \mathbb{R} \quad W = \mathbb{R}^+ \]
\[f(x) = ae^{b(x-c)} + d \]
\[D = \mathbb{R} \]
\[a > 0 \quad W = [d; \infty[\]
\[a < 0 \quad W =]-\infty; d] \]

Schnittpunkte mit der x-Achse - Nullstellen

\[f(x) = e^x \quad e^x > 0 \Rightarrow \text{keine Nullstellen} \]
\[f(x) = ae^{b(x-c)} + d \]
\[ae^{b(x-c)} + d = 0 \quad / - d \]
\[ae^{b(x-c)} = -d \quad / : a \]
\[e^{b(x-c)} = \frac{-d}{a} \quad / \ln \]
\[\frac{-d}{a} > 0 \]
\[b(x-c) = \ln \left(\frac{-d}{a} \right) \quad / : b \quad / + c \]
\[x = \frac{\ln \left(\frac{-d}{a} \right)}{b} + c \]
\[\frac{-d}{a} \leq 0 \quad \Rightarrow \text{keine Nullstellen} \]

\[f_2(x) = 2 \cdot e^{x+1} - 2 \]
\[f_4(x) = e^{-x} \]
\[f_5(x) = -2 \cdot e^{-x} + 3 \]
Grenzwert - Asymptoten

\[f(x) = e^x \]
\[\lim_{x \to \infty} e^x = +\infty \]
\[\lim_{x \to -\infty} e^x = 0 \Rightarrow \text{horizontale Asymptote } y=0 \]
\[f(x) = ae^{b(x-c)} + d \]
\[\lim_{x \to \infty} ae^{b(x-c)} + d \]
Schrittweise Berechnung für \(b > 0 \) und \(a > 0 \):

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Grenzwert (\to +\infty)</th>
<th>Asymptote</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>(\lim_{x \to +\infty} ae^{b(x-c)} + d = \infty)</td>
<td>keine</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>(\lim_{x \to +\infty} ae^{b(x-c)} + d = -\infty)</td>
<td>keine</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>(\lim_{x \to -\infty} ae^{b(x-c)} + d = d)</td>
<td>(y=d)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>(\lim_{x \to -\infty} ae^{b(x-c)} + d = -\infty)</td>
<td>keine</td>
</tr>
</tbody>
</table>

Ableitung

\[f(x) = e^x \]
\[f'(x) = e^x \]
\[f''(x) = e^x \]
Ableitung mit der Kettenregel

\[f(x) = e^{bx} \]
\[f'(x) = be^{bx} \]
\[f''(x) = b^2e^{bx} \]
\[f(x) = ae^{b(x-c)} + d \]
\[f'(x) = a \cdot be^{b(x-c)} \]
\[f''(x) = a \cdot b^2e^{b(x-c)} \]
\[f_3(x) = 2 \cdot e^{x+1} - 2 \]
\[\lim_{x \to \infty} 2 \cdot e^{x+1} - 2 \]
\[\lim_{x \to +\infty} 2 \cdot e^{x+1} - 2 \]
\[\lim_{x \to -\infty} 2 \cdot e^{x+1} - 2 \]
\[\lim_{x \to -\infty} (-\infty + 1) = -\infty \]
\[\lim_{x \to +\infty} e^{-x} = 0 \]
\[\lim_{x \to -\infty} e^{-x} = 0 \]
\[HA: y = -2 \]
\[f_4(x) = e^{-x} \]
\[\lim_{x \to +\infty} e^{-x} = 0 \]
\[HA: y = 0 \]
\[\lim_{x \to -\infty} e^{-x} = +\infty \]
\[f_5(x) = -2 \cdot e^{-x} + 3 \]
\[\lim_{x \to +\infty} -2 \cdot e^{-x} + 3 = 3 \]
\[HA: y = 3 \]
\[\lim_{x \to -\infty} -2 \cdot e^{-x} + 3 = +\infty \]

Monotonieverhalten

\[e^x > 0 \Rightarrow \text{streng monoton steigend} \]
\[f(x) = ae^{b(x-c)} + d \]
\[f'(x) = a \cdot be^{b(x-c)} \]
\[e^{b(x-c)} > 0 \]
\[a \cdot b > 0 \Rightarrow \text{streng monoton steigend (sms)} \]
\[a \cdot b < 0 \Rightarrow \text{streng monoton fallend (smf)} \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Monotonieverhalten</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>sms</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>smf</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>smf</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>sms</td>
</tr>
</tbody>
</table>

Ableitung

\[f(x) = e^x \]
\[f'(x) = e^x \]
Ableitung mit Kettenregel

\[f(x) = e^{ax} \]
\[f'(x) = ae^{ax} \]
\[f(x) = ae^{b(x-c)} + d \]
\[f'(x) = a \cdot be^{b(x-c)} \]
Krümmungsverhalten

\[f(x) = e^x \quad f''(x) = e^x \]

\(e^x > 0 \Rightarrow \text{linksgekrümmt (LK)} \)

\[f(x) = ae^{b(x-c)} + d \]

\[f''(x) = a \cdot b^2 e^{b(x-c)} \]

\(e^{b(x-c)} > 0 \)

\(a > 0 \Rightarrow \text{linksgekrümmt (LK)} \)

\(a < 0 \Rightarrow \text{rechtsgekrümmt (RK)} \)

\[f''_2(x) = 2 \cdot e^{x+1} > 0 \Rightarrow \text{LK} \]

\[f''_4(x) = e^{-x} > 0 \Rightarrow \text{LK} \]

\[f''_5(x) = -2 \cdot e^{-x} < 0 \Rightarrow \text{RK} \]

\[f''_3(x) = \frac{1}{4} e^{\frac{1}{2} x-1} > 0 \Rightarrow \text{LK} \]

Stammfunktion von \(f(x) \) - unbestimmtes Integral

\[f(x) = e^x \quad F(x) = e^x + k \]

\[f(x) = ae^{b(x-c)} \quad F(x) = \frac{a}{b} e^{b(x-c)} + k \]

\[f_2(x) = 2 \cdot e^{x+1} - 2 \quad F_2(x) = 2 \cdot e^{x+1} - 2x + c \]

\[f_4(x) = e^{-x} \quad F_4(x) = -e^{-x} + c \]

\[f_5(x) = -2 \cdot e^{-x} + 3 \quad F_5(x) = 2 \cdot e^{-x} + 3x + c \]

\[f_3(x) = e^{\frac{1}{2} x-1} + 1 \quad F_3(x) = \frac{1}{2} e^{\frac{1}{2} x-1} + x + c = 2e^{\frac{1}{2} x-1} + x + c \]

4.4.4 Logarithmusfunktion (Basis \(e \))

Formen der Logarithmusfunktion

Logarithmusfunktion

\[f(x) = \ln x \]

Allgemeine Logarithmusfunktion

\[f(x) = a \ln(b(x - c)) + d \]

(siehe Funktionen - Logarithmusfunktion)
Definitions- und Wertebereich

- \(f(x) = \ln x \)
- \(\mathbb{W} = \mathbb{R} \)
- \(\mathbb{D} = \mathbb{R}^+ \)
- \(f(x) = a \ln(b(x - c)) + d \)
- \(\mathbb{W} = \mathbb{R} \)

Definitionsbereich: \(bx - c > 0 \)
- \(b > 0 \quad \mathbb{D} =]c; \infty[\)
- \(b < 0 \quad \mathbb{D} =]-\infty; c[\)

Schnittpunkte mit der x-Achse - Nullstellen

- \(f(x) = \ln(x) \)
- \(\ln(x) = 0 / e \)
- \(x = e^0 \)
- \(x = 1 \)

- \(f(x) = a \ln(b(x - c)) + d \)
- \(a \ln(b(x - c)) + d = 0 \quad / -d \)
- \(a \ln(b(x - c)) = -d \quad / : a \)
- \(\ln(b(x - c)) = \frac{-d}{a} \quad / e \)
- \(b(x - c) = e^{\left(\frac{-d}{a}\right)} \quad / : b \quad / + c \)
- \(x = \frac{e^{\left(\frac{-d}{a}\right)}}{b} + c \)

Grenzwert - Asymptoten

- \(f(x) = \ln(x) \)

 - \(\lim_{x \to 0^+} \ln(x) = -\infty \Rightarrow \) vertikale Asymptote: \(x = 0 \)
 - \(\lim_{x \to \infty} \ln(x) = \infty \)

 - \(f(x) = a \ln(b(x - c)) + d \)

 Schrittweise Berechnung für \(b > 0 \) und \(a > 0 \):

 - \(\lim_{x \to \infty} b(\infty - c) = \infty \quad \lim_{x \to \infty} \ln \infty = \infty \quad \lim_{x \to \infty} a\infty + d = \infty \)
 - \(\lim_{x \to \infty} b(c + 0^+) = 0^+ \quad \lim_{x \to \infty} \ln 0^+ = -\infty \)
 - \(\lim_{x \to 0^+} a \cdot (\infty) + d = -\infty \Rightarrow VA: x = c \)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Grenzwert (x \to \pm \infty)</th>
<th>Asymptote</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>(\lim_{x \to \infty} a \ln(b(x - c)) + d = \infty)</td>
<td>keine</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>(\lim_{x \to \infty} a \ln(b(x - c)) + d = -\infty)</td>
<td>keine</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>(\lim_{x \to -\infty} a \ln(b(x - c)) + d = \infty)</td>
<td>keine</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>(\lim_{x \to -\infty} a \ln(b(x - c)) + d = -\infty)</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Grenzwert (x \to c)</th>
<th>Asymptote</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>(\lim_{x \to c^+} a \ln(b(x - c)) + d = \infty)</td>
<td>(x = c)</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>(\lim_{x \to c^-} a \ln(b(x - c)) + d = \infty)</td>
<td>(x = c)</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>(\lim_{x \to c^-} a \ln(b(x - c)) + d = \infty)</td>
<td>(x = c)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>(\lim_{x \to c^+} a \ln(b(x - c)) + d = \infty)</td>
<td>(x = c)</td>
</tr>
</tbody>
</table>
Ableitung

\[f(x) = \ln(x) \quad f'(x) = \frac{1}{x} = x^{-1} \]
\[f''(x) = -x^{-2} = -\frac{1}{x^2} \]

Ketten- und Quotientenregel:
\[f(x) = \ln(bx) \quad f'(x) = \frac{b}{bx} = \frac{1}{x} \]
\[f''(x) = -x^{-2} = -\frac{1}{x^2} \]
\[f(x) = a \ln(b(x - c)) + d \quad f'(x) = \frac{a \cdot b}{b(x - c)} \]
\[f''(x) = \frac{-a \cdot b^2}{(b(x - c))^2} \]

Monotonieverhalten

\[f(x) = \ln(x) \quad f'(x) = \frac{1}{x} = x^{-1} \]
\[\frac{1}{x} \Rightarrow \text{streng monoton steigend} \quad \mathbb{D} = \mathbb{R}^+ \]
\[f(x) = a \ln(b(x - c)) + d \quad f'(x) = \frac{a \cdot b}{b(x - c)} \]
\[b(x - c) > 0 \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Monotonieverhalten</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>sms</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>smf</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>smf</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>sma</td>
</tr>
</tbody>
</table>

Krümmungsverhalten

\[f(x) = \ln(x) \quad f''(x) = -x^{-2} = -\frac{1}{x^2} \]
\[-\frac{1}{x^2} < 0 \Rightarrow \text{rechtsgekrümmt (RK)} \]
\[f(x) = a \ln(b(x - c)) + d \quad f''(x) = \frac{-a \cdot b^2}{(b(x - c))^2} \]
\[(b(x - c))^2 > 0 \]
\[a > 0 \Rightarrow \text{rechtsgekrümmt (RK)} \]
\[a < 0 \Rightarrow \text{linksgeschrämmt (LK)} \]
\[f_2''(x) = -x^{-2} = -\frac{1}{x^2} < 0 \Rightarrow \text{RK} \]
\[f_3''(x) = -(x + 3)^{-2} = -\frac{1}{(x + 3)^2} < 0 \Rightarrow \text{RK} \]
\[f_4''(x) = 2(x - 2)^{-2} = \frac{2}{(x - 2)^2} > 0 \Rightarrow \text{LK} \]

Stammfunktion von f(x) - unbestimmtes Integral

\[f(x) = \ln(x) \quad F(x) = x \ln(x) - x + c \]

Interaktive Inhalte:

[Funktionsgraph] [Wertetable]
4.5 Aufstellen von Funktionsgleichungen

4.5.1 Ganzrationale Funktion

Eine ganzrationale Funktion vom Grad n ist durch n+1 Bedingungen eindeutig festgelegt. $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_2 x^2 + a_1 x + a_0$

Um die n+1 Koeffizienten $(a_n, a_{n-1}, \ldots, a_0)$ berechnen zu können, sind n+1 Gleichungen (n+1 Bedingungen) nötig.

Funktion vom Grad 2
Um die 3 Koeffizienten (a, b, c) berechnen zu können, sind 3 Gleichungen (3 Bedingungen) nötig.

Gesucht ist ein Polynom 3. Grades, das bei $x = 1$ einen Wendepunkt hat, im Punkt $P(-1/4)$ ein Extremum besitzt und bei $x = 1$ die x-Achse schneidet.

Polynom 3. Grades
$f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$
$f'(x) = 3a \cdot x^2 + 2b \cdot x + c$
$f''(x) = 6a \cdot x + 2b$

Um die 4 Koeffizienten (a, b, c, d) berechnen zu können, sind 4 Gleichungen nötig.

1. Bedingung: Wendepunkt bei $x = 1$
$f''(1) = 0 \quad 6a \cdot 1 + 2b = 0$

2. Bedingung: Punkt $P(-1/4)$
$f(-1/4) = 4 \quad a \cdot (-1/4)^3 + b \cdot (-1/4)^2 + c \cdot (-1) + d = 0$

3. Bedingung: Extremwert an der Stelle $x_0 = 1$
$f'(1) = 0 \quad 3a \cdot (-1)^2 + 2b \cdot (-1) + c = 0$

4. Bedingung: Nullstelle an der Stelle $x_0 = 1$
$f(1) = 0 \quad a \cdot 1^3 + b \cdot 1^2 + c \cdot 1 + d = 0$

Lineares Gleichungssystem lösen:

Da $6a + 2b = 0$
$-a + b - c + d = 4$
$3a - 2b + c = 0$
$a + b + c + d = 4$

$a = \frac{1}{4}$
$b = -\frac{3}{4}$
$c = -2\frac{1}{4}$
$d = 2\frac{3}{4}$

Funktionsgleichung:
$f(x) = \frac{1}{4}x^3 - \frac{3}{4}x^2 - 2\frac{1}{4}x + 2\frac{3}{4}$
<table>
<thead>
<tr>
<th>Bedingungen für die Funktion</th>
<th>Gleichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punkt $P(x_0/y_0)$</td>
<td>$f(x_0) = y_0$</td>
</tr>
<tr>
<td>Nullstelle an der Stelle x_0</td>
<td>$f(x_0) = 0$</td>
</tr>
<tr>
<td>Punkt auf der y-Achse y_0</td>
<td>$f(0) = y_0$</td>
</tr>
<tr>
<td>Extremwert an der Stelle x_0</td>
<td>$f'(x_0) = 0$</td>
</tr>
<tr>
<td>Horizontale Tangente an der Stelle x_0</td>
<td>$f''(x_0) = 0$</td>
</tr>
<tr>
<td>Berührpunkt der x-Achse an der Stelle x_0</td>
<td>$f(x_0) = 0$ $f'(x_0) = 0$</td>
</tr>
<tr>
<td>Tangente: $y = mx + t$ in x_0</td>
<td>$y_0 = mx_0 + t$ $f(x_0) = y_0$ $f'(x_0) = m$</td>
</tr>
<tr>
<td>Normale: $y = mx + t$ in x_0</td>
<td>$y_0 = mx_0 + t$ $f(x_0) = y_0$ $f'(x_0) = -\frac{1}{m}$</td>
</tr>
<tr>
<td>Wendepunkt an der Stelle x_0</td>
<td>$f''(x_0) = 0$</td>
</tr>
<tr>
<td>Terrassenpunkt an der Stelle x_0</td>
<td>$f'(x_0) = 0$ $f''(x_0) = 0$</td>
</tr>
<tr>
<td>Steigung m an der Stelle x_0</td>
<td>$f'(x_0) = m$</td>
</tr>
<tr>
<td>Hoch-/Tiefpunkt(x_0/y_0)</td>
<td>$f(x_0) = y_0$ $f'(x_0) = 0$</td>
</tr>
<tr>
<td>Terrassenpunkt(x_0/y_0)</td>
<td>$f(x_0) = y_0$ $f'(x_0) = 0$ $f''(x_0) = 0$</td>
</tr>
<tr>
<td>Wendepunkt(x_0/y_0)</td>
<td>$f(x_0) = y_0$ $f''(x_0) = 0$</td>
</tr>
<tr>
<td>Wendetangente: $y = mx + t$ in x_0</td>
<td>$y_0 = mx_0 + t$ $f(x_0) = y_0$ $f'(x_0) = m$ $f''(x_0) = 0$</td>
</tr>
<tr>
<td>Steigung m im Punkt $P(x_0/y_0)$</td>
<td>$f(x_0) = y_0$ $f'(x_0) = m$</td>
</tr>
<tr>
<td>Achsensymmetrie $f(x) = f(-x)$</td>
<td>Glieder mit ungeraden Exponenten entfallen</td>
</tr>
<tr>
<td>Punktsymmetrie $f(x) = -f(-x)$</td>
<td>Glieder mit geraden Exponenten entfallen</td>
</tr>
</tbody>
</table>

Interaktive Inhalte:
- Funktionsgraph
- Wertetable
- Terme aufstellen

Unterstützen Sie meine Arbeit durch eine Spende. 40 https://fersch.de