$Formel sammling \\ \underbrace{Mathematik}_{\text{http://www.fersch.de}} \\ Mathematik$

©Klemens Fersch

1. Juli 2020

Inhaltsverzeichnis

1	Alge	ebra	ϵ
	1.1	Grund	${\rm lagen} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $
		1.1.1	Mengen
		1.1.2	Mengenoperationen
		1.1.3	Zahlenmengen
		1.1.4	Primfaktoren - ggT - kgV
		1.1.5	Grundrechnungen
		1.1.6	Grundrechenregeln
		1.1.7	Vorzeichenregel
		1.1.8	Brüche
		1.1.9	Dezimalbruch
		1.1.10	Schriftliches Rechnen
		1.1.11	Bruchteile - Prozent - Promille
		1.1.12	Prozentrechnung
			Promillerechnung
		1.1.14	Prozentuale Ab- und Zunahme
			Potenzen
		1.1.16	Wurzeln
		1.1.17	Logarithmen
		1.1.18	Proportionalität
		1.1.19	Zahlensysteme
		1.1.20	Folgen und Reihen
		1.1.21	Komplexe Zahlen
	1.2	Terme	31
		1.2.1	Grundlagen
		1.2.2	Umformung von Termen
		1.2.3	Binomische Formel
		1.2.4	Faktorisieren - Ausklammern
		1.2.5	Quadratische Ergänzung
		1.2.6	Bruchterme
		1.2.7	Polynomdivision
	1.3	Gleich	ungen
		1.3.1	Grundlagen
		1.3.2	Methoden
		1.3.3	Lineare Gleichung
		1.3.4	Quadratische Gleichung
		1.3.5	Kubische Gleichungen
		1.3.6	Gleichungen höheren Grades
		1.3.7	Bruchgleichung
		1.3.8	Exponentialgleichungen
		1.3.9	Logarithmusgleichungen

		1.3.10	Trigonometrische Gleichungen	50
		1.3.11	Betragsgleichung	51
	1.4	Unglei	eichungen	52
		1.4.1	Grundlagen	52
		1.4.2	Äquivalenzumformung	54
		1.4.3	Lineare Ungleichung	54
		1.4.4	Quadratische Ungleichung	
		1.4.5	Betragsungleichung	
	1.5		res Gleichungssystem	
		1.5.1	Einsetzverfahren (2)	
		1.5.2	Gleichsetzungsverfahren (2)	
		1.5.3	Additions verfahren (2)	
		1.5.4	Determinantenverfahren (2)	
		1.5.5	Determinantenverfahren (3)	
	1.6		re Algebra	
	1.0	1.6.1	Matrix	
		1.6.2	Determinante	
		1.6.2 $1.6.3$	Lineare Gleichungssysteme und Gauß-Algorithmus	
	1.7		nzmathematik	
	1.7	1.7.1		
			Zinsrechnung - Jahreszins	
		1.7.2	Zinsrechnung - Tageszins	
		1.7.3	Zinsrechnung - Monatszins	
		1.7.4	Zinsfaktor	
		1.7.5	Zinseszinsformel	
		1.7.6	Degressive Abschreibung	
		1.7.7	Rentenrechnung	72
2	0			7
2		metrie	dlagen	7 4
	2.1			
	2.1	2.1.1	Definitionen	74
		2.1.1 2.1.2	Definitionen	74
		2.1.1 2.1.2 Dreiec	Definitionen	74 75
		2.1.1 2.1.2 Dreiec 2.2.1	Definitionen	74 75 76
		2.1.1 2.1.2 Dreiec 2.2.1 2.2.2	Definitionen	74 78 76 76
		2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3	Definitionen	74 76 76 76
		2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck	
		2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck	
		2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck	
		2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges Dreieck	
		2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck	
		2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges Dreieck Rogruenzsätze Pythagoras - Höhensatz - Kathetensatz	
		2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges Dreieck Pythagoras - Höhensatz - Kathetensatz	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges Dreieck Rogruenzsätze Pythagoras - Höhensatz - Kathetensatz	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Viered	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges Preieck Rechtwinkliges Dreieck Chongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges Dreieck Coleichschenkliges Dreieck Rongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck Parallelogramm Raute	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck Parallelogramm Raute Drachen	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck Parallelogramm Raute Drachen Allgemeines Trapez	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Gleichschenkliges Dreieck Gleichschenkliges Preieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck Parallelogramm Raute Drachen Allgemeines Trapez Gleichschenkliges Trapez	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck Parallelogramm Raute Drachen Allgemeines Trapez Gleichschenkliges Trapez Rechtwinkliges Trapez Rechtwinkliges Trapez	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 Polygo	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck Parallelogramm Raute Drachen Allgemeines Trapez Gleichschenkliges Trapez Rechtwinkliges Trapez Rechtwinkliges Trapez Rechtwinkliges Trapez	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 Polygo 2.4.1	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges Preieck Gleichschenkliges Preieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck Parallelogramm Raute Drachen Allgemeines Trapez Gleichschenkliges Trapez Rechtwinkliges Trapez Rechtwinkliges Trapez Rechtwinkliges Trapez Rechtwinkliges Trapez Rechtwinkliges Trapez Rechteken) Regelmäßiges n-Eck	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 Polygo 2.4.1 2.4.2	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck Parallelogramm Raute Drachen Allgemeines Trapez Gleichschenkliges Trapez Rechtwinkliges Trapez Sielenschenkliges Trapez Rechtwinkliges Trapez One (n-Ecken) Regelmäßiges n-Eck Sechseck	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 Polygo 2.4.1 2.4.2 Kreis	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck Parallelogramm Raute Drachen Allgemeines Trapez Gleichschenkliges Trapez Gleichschenkliges Trapez Rechtwinkliges Trapez tone (n-Ecken) Regelmäßiges n-Eck Sechseck	
	2.2	2.1.1 2.1.2 Dreiec 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.9 Vierec 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 2.3.9 Polygo 2.4.1 2.4.2	Definitionen Strahlensatz (Vierstreckensatz) ck Eigenschaften des Dreiecks Besondere Linien im Dreieck Allgemeines Dreieck Gleichseitiges Dreieck Gleichschenkliges Dreieck Rechtwinkliges Dreieck Gleichschenkliges rechtwinkliges Dreieck Kongruenzsätze Pythagoras - Höhensatz - Kathetensatz ck Allgemeines Viereck Quadrat Rechteck Parallelogramm Raute Drachen Allgemeines Trapez Gleichschenkliges Trapez Rechtwinkliges Trapez Sielenschenkliges Trapez Rechtwinkliges Trapez One (n-Ecken) Regelmäßiges n-Eck Sechseck	

		2.5.3 K	Kreissektor (Bogenmaß) 95
		2.5.4 K	Treisring
	2.6	Stereome	etrie
		2.6.1 P	risma
		2.6.2 V	Vürfel
		2.6.3 G	Quader
		2.6.4 P	yramide
			Kreiszylinder
			Iohlzylinder
			Kreiskegel
			Kegelstumpf
			Kugel
	2.7		netrie
			Gradma - Bogenmaß
			Definition
			Quadrantenregel
			Umrechnungen
			Rechtwinkliges Dreieck
			inussatz
			Kosinussatz
			Kongruenzsätze - Berechnungen am Dreieck
		2.1.0 P	tongruenzsatze - Derechnungen am Dreieck
3	Fun	ktionen	116
	3.1		gen
			Definition
			Jmkehrfunktion
	3.2		Funktion
			Jrsprungsgerade
			Fraph und Eigenschaften
			Geradengleichung aufstellen
			Gerade - Gerade
	3.3		ische Funktion
	0.0		Fraph und Eigenschaften
		3.3.2 P	Parabelgleichung aufstellen und umformen
			Parabel - Gerade
			Parabel - Parabel
	3 /		aften von Funktionen
	0.4		ymmetrie
			Monotonie
			chnittpunkte mit den Koordinatenachsen
		-	symptote
			bbildung von Funktionen
	2 5		ě
	3.5		
			Parabeln vom Grad n - gerader Exponent
			Parabeln vom Grad n - ungerader Exponent
			Iyperbeln vom Grad n - gerader Exponent 136
			Typerbeln vom Grad n - ungerader Exponent
			Vurzelfunktion - rationaler, positiver Exponent
			Vurzelfunktion - rationaler, negativer Exponent
	3.6		tialfunktion
			Graph und Eigenschaften
	3.7		musfunktion
			Graph und Eigenschaften
	3.8		ktion $\dots \dots \dots$
			Graph und Eigenschaften
	3.9	Kosinusf	unktion

		3.9.1 Graph und Eigenschaften	43
	3.10	Tangensfunktion	44
		3.10.1 Graph und Eigenschaften	
	3.11	Betragsfunktion	
		3.11.1 Graph und Eigenschaften $\dots \dots \dots$	45
	3.12	Wachstumsfunktionen	
		3.12.1 Lineares Wachstum	
		3.12.2 Exponentielles Wachstum	47
		1. '	
4	Ana	v	
	4.1	Grenzwert - Stetigkeit	
		4.1.1 Grenzwert von f(x) für x gegen x0	
		4.1.2 Grenzwert von f(x) für x gegen Unendlich	
		4.1.3 Stetigkeit	
	4.2	4.1.4 Rechenregeln	53
	4.2		55
			56
		ů	58
			59
		ų į	61
			62
			$\frac{62}{63}$
			64
			65
	4.3		66
			66
			68
		· ·	68
			70
	4.4	Kurvendiskussion	71
		4.4.1 Ganzrationale Funktion	71
		4.4.2 Gebrochenrationale Funktion	78
		4.4.3 Exponentialfunktion (Basis e)	82
		4.4.4 Logarithmusfunktion (Basis e)	85
	4.5	Aufstellen von Funktionsgleichungen	88
		4.5.1 Ganzrationale Funktion	88
5		hastik 19	
	5.1		90
	- 0		90
	5.2		91
			91
			91
			91
	r 0		92
	5.3		94
			94
		ů	95
			$\frac{96}{07}$
			97 98
			90 99
			01
		ů	$01 \\ 04$
			0^{4}
	5.4	· · · · · · · · · · · · · · · · · · ·	06
		jr	- 0

		5.4.1	Einseitiger Signifikanztest	206
6	Ana	lytisch	ne Geometrie	208
	6.1	Vektor	rechung in der Ebene	208
		6.1.1	Vektor - Abstand - Steigung - Mittelpunkt	208
		6.1.2	Skalarprodukt - Fläche - Winkel	209
		6.1.3	Abbildungen	211
	6.2		`	215
	-	6.2.1	Vektor - Abstand - Mittelpunkt	215
		6.2.2	Winkel - Skalarprodukt - Vektorprodukt - Abhängigkeit	216
		6.2.3	Spatprodukt - lineare Abhängigkeit - Basisvektoren - Komplanarität	218
	6.3		e	220
	0.0	6.3.1	Gerade aus 2 Punkten	220
	6.4	Ebene		221
	0.1	6.4.1	Parameterform - Normalenform	221
		6.4.2	Ebenengleichung aufstellen	222
		6.4.3	Parameterform - Koordinatenform	224
		6.4.4	Koordinatenform - Parameterform	225
		6.4.5	Koordinatenform - Hessesche Normalenform	226
	6.5	Kugel		227
	0.0	6.5.1	Kugelgleichung	227
	6.6		eziehung	228
	0.0	6.6.1	Punkt - Gerade	228
		6.6.2	Gerade - Gerade	229
		6.6.3	Punkt - Ebene (Koordinatenform)	230
		6.6.4	Gerade - Ebene (Koordinatemform)	$\frac{230}{231}$
		6.6.5	Ebene - Ebene	$\frac{231}{232}$
		0.0.5	Ebene - Ebene	232
7	Tab	ellen		234
•	7.1		hnungen	
	•••	7.1.1	Zehnerpotenz	234
		7.1.2	Längen	234
		7.1.3	Flächen	235
		7.1.4	Volumen	$\frac{235}{235}$
		7.1.5	Zeit	$\frac{235}{235}$
		7.1.6	Winkel	235
		7.1.7	Dezimale Einheiten	$\frac{236}{236}$
	7.2			
	7.2		isches Alphabet	
	1.0	OHICCH		400

1.1 Grundlagen

1.1.1 Mengen

Definition

Eine Menge (Großbuchstaben) besteht aus unterscheidbaren Elementen.

 $\mathbb{A}, \mathbb{B}, \mathbb{C}$

Mengen in aufzählender Form

$$\mathbb{A} = \{a; b; c\}$$

$$\begin{split} \mathbb{A} &= \left\{1; 2; 3; 4\right\} \\ \mathbb{B} &= \left\{-2; 0, 4; \sqrt{3}\right\} \end{split}$$

Mengen in beschreibender Form

$$\mathbb{M} = \{x | x \text{ hat die Eigenschaft E}\}$$

 $\mathbb{M}_1 = \{x | x \text{ Menge aller Primzahlen}\}$ $\mathbb{M}_2 = \{x | x \text{ alle natürlichen Zahlen, die größer als 2 sind}\}$

\in Element - \notin nicht Element

$$\mathbb{M} = \{a; b; c\}$$
$$b \in \mathbb{M}$$

 $e \notin \mathbb{M}$

\subset Teilmenge - $\not\subset$ nicht Teilmenge

$$\mathbb{A} = \{a; b; c; d; e\}$$

$$\mathbb{B} = \{b; c\}$$

$$\mathbb{C} = \{b; c; f\}$$

 $\mathbb{B}\subset\mathbb{A}$ Jedes Element von B ist auch Element von A.

 $\mathbb{C} \not\subset \mathbb{A}$ Nicht jedes Element von C ist auch Element von A.

Gleichheit A = B

$$\mathbb{A} = \{a; b; c; d; e\}$$

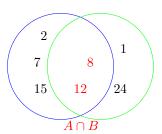
$$\mathbb{B} = \{a; b; c; d; e\}$$

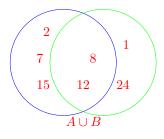
 $\mathbb{A}=\mathbb{B}$ Jedes Element von \mathbb{A} ist auch Element von $\mathbb{B}.$

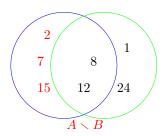
Jedes Element von \mathbb{B} ist auch Element von \mathbb{A} .

$$A = \{-3; 0; 1; 4; 12\}$$

$$B = \{-3; 0; 1; 4; 12\}$$


$$A = B$$


Leere Menge {}


$$\mathbb{A} = \{\} = \emptyset$$

Menge A enthält keine Elemente.

1.1.2 Mengenoperationen

$$\mathbb{A} = \{2; 7; 8; 12; 15\}$$
 $\mathbb{B} = \{1; 8; 12; 24\}$

Schnittmenge \cap

$$\mathbb{A} = \{c; d; e\}$$
$$\mathbb{B} = \{a; b; c; d\}$$

$$\mathbb{A}\cap\mathbb{B}=\{c;d\}$$

Alle Elemente die in A und zugleich in B enthalten sind.

$$A = \{2; 7; 8; 12; 15\}$$

$$B = \{1; 8; 12; 24\}$$

$$A \cap B = \{8; 12\}$$

$$\{4; 5; 23\} \cap \{0; 1; 4; 5; 12\} = \{4; 5\}$$

${\bf Vereinigungsmenge} \ \cup \\$

$$\mathbb{A} = \{c; d; e\}$$

$$\mathbb{B} = \{a; b; c; d\}$$

$$\mathbb{A} \cup \mathbb{B} = \{a; b; c; d; e\}$$

Alle Elemente die in A oder B enthalten sind.

$$\begin{split} \mathbb{A} &= \{2; 7; 8; 12; 15\} \\ \mathbb{B} &= \{1; 8; 12; 24\} \\ \mathbb{A} &\cup \mathbb{B} = \{1; 7; 8; 12; 15; 24\} \\ \{4; 5; 23\} &\cup \{0; 1; 4; 5; 12\} = \{0; 1; 4; 5; 12; 23\} \end{split}$$

Differenz \

$$\mathbb{A} = \{c; d; e\}$$

$$\mathbb{B} = \{a; b; c; d\}$$

$$\mathbb{A} \setminus \mathbb{B} = \{e\}$$

Alle Elemente die in A, aber nicht in B enthalten sind.

$$A = \{2; 7; 8; 12; 15\}$$

$$B = \{1; 8; 12; 24\}$$

$$A \setminus B = \{2; 7; 15\}$$

$$\{4; 5; 23\} \setminus \{0; 1; 4; 5; 12\} = \{23\}$$

Produktmenge \times

$$\mathbb{A} \times \mathbb{B} = \{(x, y) | x \in \mathbb{A}, y \in \mathbb{B}\}\$$

$$\mathbb{A} = \{c; d; e\}$$

$$\mathbb{B} = \{a; b\}$$

$$\mathbb{A} \times \mathbb{B} = \{(c, a); (c, b); (d, a); (d, b); (e, a); (e, b)\}$$

Die Menge aller geordneten Paare (x,y).

$$x \in \mathbb{A}$$
 und $y \in \mathbb{B}$

$$A = \{2; 7; 8\}$$

$$B = \{1; 8\}$$

$$A \times B = \{(2, 1); (2, 8); (7, 1); (7, 8); (8, 1); (8, 8)\}$$

1.1.3 Zahlenmengen

Natürliche Zahlen

$$\mathbb{N} = \{1; 2; 3; 4; \ldots\}$$

$$3 \in \mathbb{N} \qquad -3 \notin \mathbb{N}$$

$$0 \notin \mathbb{N} \qquad 0, 2 = \frac{1}{5} \notin \mathbb{N}$$

Natürliche Zahlen und Null

 $\mathbb{N}_0 = \{0; 1; 2; 3; 4; \ldots\}$ $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$ $\mathbb{N} \subset \mathbb{N}_0$

 $3 \in \mathbb{N}_0 \qquad -3 \notin \mathbb{N}_0$ $0 \in \mathbb{N}_0 \qquad 0, 2 = \frac{1}{5} \notin \mathbb{N}_0$

Ganze Zahlen

 $\mathbb{Z} = \{\ldots; -2; -1; 0; 1; 2; \ldots\}$ $\mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z}$

 $3 \in \mathbb{Z} \qquad -3 \in \mathbb{Z}$ $0 \in \mathbb{Z} \qquad 0, 2 = \frac{1}{5} \notin \mathbb{Z}$

Rationale Zahlen

Rationale Zahlen \mathbb{Q} sind

- Bruchzahlen
- endliche Dezimalzahlen
- unendliche periodische Dezimalzahlen

$$\mathbb{Q} = \left\{ \begin{smallmatrix} p \\ q \end{smallmatrix} \middle| p \in \mathbb{Z} \land q \in \mathbb{N} \right\}$$

$$\mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q}$$

 $-3\frac{3}{7} \in \mathbb{Q}$ $3 \in \mathbb{Q}$ $-3 \in \mathbb{Q}$ $\sqrt{2} \notin \mathbb{Q}$ $0 \in \mathbb{Q}$

Jede endliche Dezimalzahl lässt sich durch einen Bruch darstellen. $0,223=\frac{223}{100}\in\mathbb{Q}\qquad 0,2=\frac{1}{5}\in\mathbb{Q}$

Jede unendliche periodische Dezimalzahl lässt sich durch einen Bruch darstellen.

 $0, 3333... = 0, \overline{3} = \frac{1}{3} \in \mathbb{Q}$ $0, 535353... = 0, \overline{53} = \frac{53}{99} \in \mathbb{Q}$

 \mathbb{Q}^+ = positve rationale Zahlen

 \mathbb{Q}_0^+ = positve rationale Zahlen und Null

 $\mathbb{Q}^-=$ negative rationale Zahlen

 \mathbb{Q}_0^- = negative rationale Zahlen und Null

 $\mathbb{Q} \setminus \{3,4\} = \text{rationale Zahlen ohne 3 und 4}$

 $\mathbb{Q} \setminus [-3;5] = \text{rationale Zahlen ohne } 3$ und 4 und ohne den Bereich zwischen 3 und 4

 $\mathbb{Q} \setminus [-3; 5]$ = rationale Zahlen ohne den Bereich zwischen 3 und 4

Irrationale Zahlen

Irrationale Zahlen $\mathbb I$ sind unendliche nicht periodische Dezimalzahlen.

Kreiszahl $\pi=3,1415926535..\in\mathbb{I}$ Eulersche Zahl $e=2,7182818284..\in\mathbb{I}$ $\sqrt{2}\in\mathbb{I} \qquad \sqrt{3}\in\mathbb{I} \qquad \sqrt{4}=2\notin\mathbb{I} \qquad 3\notin\mathbb{I} \qquad -0,3\notin\mathbb{I}$

Reelle Zahlen

Reelle Zahlen \mathbb{R} sind

- \bullet rationale Zahlen $\mathbb Q$
- \bullet irrationale Zahlen $\mathbb I$

 $\mathbb{R} = \mathbb{O} \cup \mathbb{I}$

 $\mathbb{R} = \{\text{jeder Punkt auf dem Zahlenstrahl}\}$

 $\mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

Kreiszahl $\pi = 3,1415926535.. \in \mathbb{R}$

Eulersche Zahl $e = 2,7182818284.. \in \mathbb{R}$

$$-3\frac{3}{7} \in \mathbb{R} \qquad \sqrt{2} \in \mathbb{R} \qquad \sqrt{3} \in \mathbb{R}$$

$$\sqrt{4} = 2 \in \mathbb{R}$$
 $3 \in \mathbb{R}$ $-0, 3 \in \mathbb{R}$ $\sqrt{-4} \notin \mathbb{R}$

 \mathbb{R}^+ = positive reelle Zahlen

 \mathbb{R}_0^+ = positive reelle Zahlen und Null

 \mathbb{R}^- = negative reelle Zahlen

 \mathbb{R}_0^- = negative reelle Zahlen und Null

 $\mathbb{R} \setminus \{3,4\} = \text{reelle Zahlen ohne 3 und 4}$

 $\mathbb{R} \setminus [-3; 5] = \text{reelle Zahlen ohne 3 und 4 und ohne den Bereich zwischen 3 und 4}$

 $\mathbb{R} \setminus [-3; 5]$ = reelle Zahlen ohne den Bereich zwischen 3 und 4

Vergleichszeichen

 $\begin{array}{lll} a=b & \text{a ist gleich b} \\ a\neq b & \text{a ist ungleich b} \\ a< b & \text{a ist kleiner als b} \\ a>b & \text{a ist größer als b} \\ a\leq b & \text{a ist kleiner oder gleich b} \\ a\geq b & \text{a ist größer oder gleich b} \\ \end{array}$

1.1.4 Primfaktoren - ggT - kgV

Primzahlen

Eine Primzahl ist eine ganze Zahl, die nur durch eins und sich selbst teilbar ist.

Primzahlen: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107.....

Primfaktorenzerlegung

Zerlegung einer natürlichen Zahl als Produkt aus Primzahlen.

 $\begin{aligned} 12 &= 2 \cdot 2 \cdot 3 \\ 120 &= 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \\ 340 &= 2 \cdot 2 \cdot 5 \cdot 17 \end{aligned}$

Teilbarkeitsregeln

Eine Zahl ist durch ...

2 teilbar, wenn ihre letzte Ziffer eine 2, 4, 6, 8 oder 0 ist.

3 teilbar, wenn ihre Quersumme durch 3 teilbar ist.

4 teilbar, wenn ihre letzten 2 Stellen durch 4 teilbar sind.

5 teilbar, wenn ihre letzte Stelle eine 5 oder eine 0 ist.

6 teilbar, wenn sie durch 2 und durch 3 teilbar ist.

8 teilbar, wenn ihre letzten 3 Stellen durch 8 teilbar sind.

9 teilbar, wenn ihre Quersumme durch 9 teilbar ist.

10 teilbar, wenn ihre letzte Stelle eine 0 ist.

12 teilbar, wenn sie durch 3 und durch 4 teilbar ist.

15 teilbar, wenn sie durch 3 und durch 5 teilbar ist.

18 teilbar, wenn sie durch 2 und durch 9 teilbar ist.

Die Quersumme einer Zahl, ist die Summe ihrer Ziffern.

5|45 5 ist Teiler von 45 3|123 3 ist Teiler von 123 Quersumme von 123: 1+2+3=6 $3|6\Rightarrow 3|123$

Vielfachmenge V(a)

Alle Vielfachen einer natürlichen Zahl a.

 $V(4) = \{4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44; 48..\}$ $V(6) = \{6; 12; 18; 24; 30; 36; 42; 48; 54; 60; 66; 72; 78; 84..\}$ $V(3) = \{3; 6; 9; 12; 15; 18; 21; 24; 27; 30; 33; 36; 39; 42; 45..\}$

Teilermenge T(a)

Alle ganzzahligen Teiler einer Zahl a.

 $T(36) = \{1; 2; 3; 4; 6; 9; 12; 18; 36\}$ $T(24) = \{1; 2; 3; 4; 6; 8; 12; 24\}$ $T(42) = \{1; 2; 3; 6; 7; 14; 21; 42\}$

Größter gemeinsamer Teiler ggT(a,b)

Methode 1: Aus den Teilermengen von a und b den größten Teiler ablesen.

Methode 2: Das Produkt der gemeinsamen Primfaktoren bilden.

ggT(12;18) = 6

Aus den Teilermengen den größten Teiler ablesen:

 $T(12)=\{1;2;3;4;6;12\}$ $T(18)=\{1;2;3;6;9;18\}$ Gemeinsame Primfaktoren von 12 und 18:

Kleinstes gemeinsames Vielfaches kgV(a,b)

Methode 1: Aus den Vielfachmengen von a und b das kleinste Vielfache ablesen.

Methode 2: Das Produkt aller Primfaktoren von a und den zusätzlichen Primfaktoren von b bilden.

$$\label{eq:variable_system} \begin{split} & kgV(12;18) = 36 \\ & Aus \ den \ Vielfachmengen \ das \ kleinste \ Vielfache \ ablesen: \\ & V(12) = & \{12;24;36;48;60;72...\} \\ & V(18) = & \{18;36;54;72;90..\} \\ & Primfaktoren \ von \ 12 \ und \ zusätzlichen \ Primfaktoren \ von \ 18: \end{split}$$

 $\begin{array}{c|cccc} 12 & 2 & 2 & 3 \\ 18 & 2 & 3 & 3 \\ \hline kgV(12;18) & 2 & 2 & 3 & 3 \\ kgV(12;18) & 2 & 2 & 3 & 3 \\ \end{array}$

Interaktive Inhalte:

$$ggT(a,b)$$
 $kgV(a,b)$ $ggT(a,b,c)$ $kgV(a,b,c)$

1.1.5 Grundrechnungen

Addition

$$a$$
 + b = c 1.Summand + 2.Summand = Summe

$$3+2=5$$

$$2x + 3x = 5x$$

$$2x^{2} + 3x^{2} = 5x^{2}$$

$$5x^{2}y + 7x^{2}y = 12x^{2}y$$

$$2xy + 3xy + 4z + 5z = 5xy + 9z$$

Subtraktion

$$a$$
 - b = c

Minuend - Subtrahend = Differenz

$$3-2=1
3x-2x=x
2x^2-3x^2=-x^2
5x^2y-7x^2y=-2x^2y
3e^x-2e^x=e^x$$

Multiplikation

$$a \cdot b = c$$
1.Faktor \cdot 2.Faktor $=$ Produkt

$$3 \cdot 2 = 6$$

$$2x \cdot 3x = 6x^{2}$$

$$2x^{2} \cdot 3x^{2} = 6x^{4}$$

$$5x^{2}y \cdot 7x^{2}y = 35x^{4}y$$

$$2xy \cdot 3xy \cdot 4z \cdot 5z = 120x^{2}y^{2}z^{2}$$

Division

$$a$$
 : b = c
Dividend : Divisor = Quotient
$$\frac{a}{1} = c \qquad \frac{\text{Dividend}}{\text{Div}} = \text{Quotient}$$

Divisor

$$12: 3 = 4 \frac{12}{3} = 4$$

1.1.6 Grundrechenregeln

Kommutativgesetz

$$a \cdot b = b \cdot a$$
$$a + b = b + a$$

$$3+2=2+3=5
2x+3x=3x+2x=5x
3 \cdot 2=2 \cdot 3=6
2x \cdot 3x=3x \cdot 2x=6x^2$$

Assoziativgesetz

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
$$(a+b) + c = a + (b+c)$$

$$4 + (3 + 2) = (4 + 3) + 2 = 9$$

$$4x + (3x + 2x) = (4x + 3x) + 2x = 9x$$

$$4 \cdot (3 \cdot 2) = (4 \cdot 3) \cdot 2 = 24$$

$$4x \cdot (3x \cdot 2x) = (4x \cdot 3x) \cdot 2x = 24x^{3}$$

Distributivgesetz

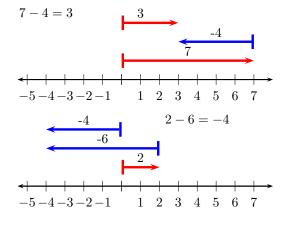
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

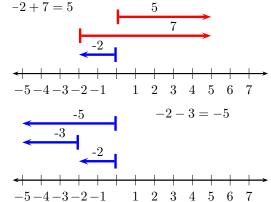
$$3 \cdot (2+5) = 3 \cdot 2 + 3 \cdot 5 = 21$$

$$3 \cdot (2x+5) = 3 \cdot 2x + 3 \cdot 5 = 6x + 15$$

$$3x \cdot (2x+5) = 3x \cdot 2x + 3x \cdot 5 = 6x^2 + 15x$$

Reihenfolge der Rechenarten


- Klammern vor
- Potenzierung vor
- Punktrechnung (Mulitiplikation und Division) vor
- Strichrechnung (Addition und Subtraktion)
- ullet von links nach rechts


$$100 - 40 - 5 \cdot (42 - 5 \cdot 2^3)^2$$

Innerhalb der Klammer Potenzierung: $100 - 40 - 5 \cdot (42 - 5 \cdot 8)^{2}$ Innerhalb der Klammer Punktrechnung: $100 - 40 - 5 \cdot (42 - 40)^{2}$ Innerhalb der Klammer Strichrechnung: $100 - 40 - 5 \cdot (42 - 40)^{2}$ Potenzierung: $100 - 40 - 5 \cdot 2^{2}$

Punktrechung: $100 - 40 - 5 \cdot 4$ von links nach rechts: 100 - 40 - 20 Ergebnis: 60 - 20 = 40

1.1.7 Vorzeichenregel

Vorzeichen und Klammern

$$+(+a) = +a$$
$$+(-a) = -a$$

$$-(+a) = -a$$

$$-(-a) = +a$$

$$+(+2) = +2$$

 $-(-2) = +2$
 $+(-2) = -2$
 $-(+2) = -2$

Multiplikation

$$+a \cdot (+b) = +c$$
$$-a \cdot (-b) = +c$$
$$+a \cdot (-b) = -c$$

$$-a \cdot (-b) = +c$$

$$+a \cdot (-b) = -c$$

$$-a \cdot (+b) = -c$$

$$+3 \cdot (+2) = +6$$

 $-3 \cdot (-2) = +6$
 $+3 \cdot (-2) = -6$
 $-3 \cdot (+2) = -6$

Division

$$\frac{+a}{+b} = +c$$

$$\frac{-a}{-b} = +c$$

$$\frac{+a}{-b} = -c$$

$$\frac{-a}{+b} = -c$$

$$\frac{+6}{+3} = +2$$
$$\frac{-6}{-3} = +2$$
$$\frac{+6}{-3} = -2$$
$$\frac{-6}{+3} = -2$$

Addition und Subtraktion

Bei gleichem Vorzeichen werden die Beträge addiert. Das Ergebnis erhält das gemeinsame Vorzeichen.

Bei verschiedenen Vorzeichen werden die Beträge subtrahiert. Das Ergebnis erhält das Vorzeichen der Zahl mit dem größerem Betrag.

$$10 + 4 = 14$$

$$-10 - 4 = -(10 + 4) = -14$$

$$10 - 4 = 6$$

$$-10 + 6 = -(10 - 6) = -4$$

$$3x + 4x = 7x$$

$$-3x - 4x = -(3x + 4x) = -7x$$

$$3x - 4x = -(4x - 3x) = -x$$

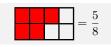
$$-3x + 4x = 4x - 3x = x$$

Betrag einer Zahl

$$|x| = \begin{cases} x & x > 0 \\ -x & x < 0 \\ 0 & x = 0 \end{cases}$$

$$|-3| = 3$$
$$|3| = 3$$

1.1.8 Brüche


Bruch

$$\frac{\text{Dividend}}{\text{Divisor}} = \frac{\text{Z\"{a}hler}}{\text{Nenner}} = \frac{Z}{N} = \text{Wert des Bruchs}$$

Besondere Brüche

- Echter Bruch: Nenner größer als Zähler
- Unechter Bruch: Zähler größer als Nenner
- Gemischte Zahl: Ganze Zahl + Bruch
- Stammbrüche: Zähler ist 1
- Gleichnamige Brüche: Nenner ist gleich
- •Ungleichnamige Brüche:Nenner ist verschieden
- Kehrwert:Zähler und Nenner vertauschen
- •Scheinbrüche: Scheinbrüche sind natürliche Zahlen

Echter Bruch:
$$\frac{2}{4}$$
; $\frac{5}{7}$; $\frac{1}{3}$

Unechter Bruch:
$$\frac{20}{4}$$
; $\frac{15}{7}$; $\frac{8}{3}$

Gemischte Zahl:
$$2\frac{2}{4}$$
; $6\frac{5}{7}$; $7\frac{8}{3}$

Stammbrüche:
$$\frac{1}{2}$$
; $\frac{1}{3}$; $\frac{1}{4}$

Gleichnamige Brüche:
$$\frac{2}{4}$$
; $\frac{3}{4}$; $\frac{8}{4}$

Ungleichnamige Brüche:
$$\frac{2}{4}$$
; $\frac{5}{7}$; $\frac{8}{3}$

$$\text{Kehrwert:} \frac{2}{4} \Leftrightarrow \frac{4}{2}; \frac{5}{7} \Leftrightarrow \frac{7}{5}$$

Scheinbrüche:
$$\frac{4}{2} = 2$$
; $\frac{28}{7} = 4$

Erweitern von Brüchen

Zähler und Nenner mit der gleichen Zahl multiplizieren

$$\frac{3}{4} = \frac{3 \cdot 2}{4 \cdot 2} = \frac{6}{8}$$

Kürzen von Brüchen

• Zähler und Nenner mit der gleichen Zahl dividieren $\frac{a}{b} = \frac{a:c}{b:c}$

$$\overline{b} = \overline{b : a}$$

• Zähler und Nenner durch den ggT(Zähler;Nenner) teilen

$$ggT(a,b) = c$$
$$\frac{a}{b} = \frac{a:c}{b:c}$$

• Zähler und Nenner in Primfaktoren zerlegen und gleiche

ggT(18; 12) = 6 $\frac{12}{18} = \frac{12 : 6}{18 : 6} = \frac{2}{3}$ $\frac{12}{18} = \frac{2 \cdot 2 \cdot 3}{2 \cdot 3 \cdot 3} = \frac{2}{3}$

Addition und Subtraktion gleichnamiger Brüche

Zähler addieren bzw. subtrahieren
$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

$$\frac{a}{c} - \frac{b}{c} = \frac{a-b}{c}$$

$$\frac{2}{3} + \frac{4}{3} = \frac{2+4}{3} = \frac{6}{3}$$

$$\frac{5}{7} - \frac{3}{7} = \frac{5-3}{7} = \frac{2}{7}$$

Addition und Subtraktion ungleichnamiger Brüche

Brüche durch Erweitern gleichnamig machen

• Hauptnenner: Produkt der beiden Nenner

Erweiterungsfaktoren: d und b

El weiter unigstaktoren. d unid b
$$\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d}{b \cdot d} + \frac{c \cdot b}{b \cdot d} = \frac{a \cdot d + c \cdot b}{b \cdot d}$$
$$\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d}{b \cdot d} - \frac{c \cdot b}{b \cdot d} = \frac{a \cdot d - c \cdot b}{b \cdot d}$$
$$\bullet \text{ Hauptnenner: kgV(b,d)=c}$$

Erweiterungsfaktoren: $\frac{c}{b}$ und $\frac{c}{d}$

$$\frac{2}{3} + \frac{3}{4}$$

 $\frac{2}{3} + \frac{3}{4}$ Hauptnenner: $3 \cdot 4 = 12$

Erweiterungsfaktoren: 4 ${\bf und}\ 3$

$$\frac{2}{3} + \frac{3}{4} = \frac{2 \cdot 4}{3 \cdot 4} + \frac{3 \cdot 3}{4 \cdot 3} = \frac{8}{12} + \frac{9}{12} = \frac{17}{12} = 1\frac{5}{12}$$

$$\frac{3}{12} + \frac{5}{18}$$

$$\frac{3}{12} + \frac{5}{18}$$
Hauptnenner: kgV(12,18) = 36

Erweiterungsfaktoren: $\frac{36}{12} = 3$ $\frac{36}{18} = 2$

$$\frac{3}{12} + \frac{5}{18} = \frac{3 \cdot 3}{12 \cdot 3} + \frac{5 \cdot 2}{18 \cdot 2} = \frac{9 + 10}{36} = \frac{19}{36} = \frac{19}{36}$$

Multiplikation von Brüchen

Zähler mal Zähler und Nenner mal Nenner

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

$$\frac{3}{4} \cdot \frac{5}{6} = \frac{3 \cdot 5}{4 \cdot 6} = \frac{15}{24}$$

Division von Brüchen

Mit dem Kehrwert des Bruches multiplizieren

Bruch durch Bruch
$$\frac{a}{b}:\frac{c}{d}=\frac{a}{b}\cdot\frac{d}{c}=\frac{a\cdot d}{b\cdot c}$$

Bruch durch Zahl

$$\frac{\overline{b}}{e} = \frac{a}{b} : e = \frac{a}{b} \cdot \frac{1}{e} = \frac{a}{b \cdot e}$$

Zahl durch Bruch
$$\frac{e}{\frac{c}{d}} = e : \frac{c}{d} = \frac{e}{1} \cdot \frac{d}{c} = \frac{e \cdot d}{c}$$

Doppelbruch

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} : \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}$$

$$\frac{3}{4} : \frac{5}{6} = \frac{3}{4} \cdot \frac{6}{5} = \frac{3 \cdot 6}{4 \cdot 5} = \frac{18}{20}$$

$$4 : \frac{5}{6} = 4 \cdot \frac{6}{5} = \frac{4 \cdot 6}{5} = \frac{24}{5}$$

$$\frac{3}{4} : 5 = \frac{3}{4} \cdot \frac{1}{5} = \frac{3}{4 \cdot 5} = \frac{3}{20}$$

$$\frac{3}{\frac{4}{5}} = \frac{3}{4} : \frac{5}{6} = \frac{3}{4} \cdot \frac{6}{5} = \frac{3 \cdot 6}{4 \cdot 5} = \frac{18}{20}$$

Interaktive Inhalte:

Kürzen

$$\frac{a}{b} - \frac{c}{d}$$

$$a\frac{b}{c} - d\frac{e}{f}$$

1.1.9Dezimalbruch

Stellenwerttafel

Stelleliwerttaler														
Bruch	M	$_{ m HT}$	ZT	Γ	Н	\mathbf{Z}	\mathbf{E}	,	\mathbf{z}	h	t	zt	ht	Dezimalbruch
$\frac{1}{10}$							0	,	1					0,1
$\frac{\frac{1}{100}}{23}$							0	,	0	1				0,01
$\frac{23}{100}$ 456							0	,	2	3				0,23
$\frac{456}{1000}$							0	,	4	5	6			0,456
$12\frac{3}{10000}$						1	2	,	0	0	0	3		12,0003
$567\frac{30}{10000}$					5	6	7	,	0	0	3	0		567,003

Z	Zehner	10^{1}	10	E	Einer	10^{0}	1	
Н	Hunderter	10^{2}	100	\mathbf{z}	Zehntel	10^{-1}	0, 1	$\frac{1}{10}$
Т	Tausender	10^{3}	1000	h	Hundertstel	10^{-2}	0,01	$\frac{1}{100}$
ZT	Zehntausender	10^{4}	10000	t	Tausendstel	10^{-3}	0,001	$\frac{1}{1000}$
HT	Hunderttausender	10^{5}	100000	zt	Zehntausendstel	10^{-4}	0,0001	$\frac{1}{10000}$
M	Million	10^{6}	1000000	ht	Hunderttausendstel	10^{-5}	0,00001	100000

Bruch - Dezimalbruch

- Erweitern des Bruchs auf Zehntel, Hundertstel, Tausendstel usw.
- Werte in die Stellenwerttafel einsetzen.
- Schriftliches Dividieren

$\frac{1}{100} = 0.1$ $\frac{1}{100} = 0.01$
10 100 1 5 4 16
$\frac{1}{1000} = 0{,}001$ $\frac{1}{2}\frac{3}{10} = 0{,}5$ $\frac{1}{25} = \frac{10}{100} = 0{,}16$
$\frac{3}{3} - \frac{375}{375} - 0.375$ $\frac{12,5}{3} - 0.125$
901 1000 125 100
$\frac{201}{1000} = 0,201$ $\frac{120}{10000} = 0,0125$
$\frac{100}{100} = 1$
$\frac{200}{100} = 1$ $\frac{2}{3} = 2 : 3 = 0,666 = 0,\overline{6}$

Dezimalbruch - Bruch

• Endlicher Dezimalburch:

Nachkommazahl (Dezimalen) als Zähler und im Nenner die entsprechende Stufenzahl(10,100,1000)

• Periodischer Dezimalbruch:

Periode beginnt direkt nach den Komma

Nachkommazahl (Dezimalen) als Zähler und im Nenner den entsprechenden Bruch mit 9 (9,99,999)

$$0,201 = \frac{201}{1000} \quad 0,0001 = \frac{1}{10000}$$

$$0,\overline{1} = \frac{1}{9} \quad 0,\overline{2} = \frac{2}{9}$$

$$0,\overline{12} = \frac{12}{99} \quad 0,\overline{255} = \frac{255}{999}$$

Multiplizieren oder Dividieren mit Stufenzahl

• Multipliziern einer Dezimalzahl mit:

10 - Komma um 1 Stelle nach rechts verschieben

100 - Komma um 2 Stellen nach rechts verschieben

1000 - Komma um 3 Stellen nach rechts verschieben

.

• Dividieren einer Dezimallzahl durch:

10 - Komma um 1 Stelle nach links verschieben

100 - Komma um 2 Stellen nach links verschieben

1000- Komma um 3 Stellen nach links verschieben

•••••

 $345,677 \cdot 10 = 3456,77$ $345,677 \cdot 100 = 34567,7$ $345,677 \cdot 1000 = 345677,0$ $345,677 \cdot 10000 = 3456770,0$ 345,677 : 100 = 345677 345,677 : 1000 = 0,345677 345,677 : 10000 = 0,0345677

Runden von Dezimalbrüchen

Ziffer der zu rundenten Stelle bestimmen.

• Ist die nachfolgende Ziffer 0,1,2,3,4, dann wird abgerundet. Die gerundete Stelle bleibt unverändert

• Ist die nachfolgende Ziffer 5,6,7,8,9, dann wird aufgerundet. Die gerundete Stelle wird um eins erhöht.

• Wenn nach dem Komma gerundet wird, werden die nachfolgenden Ziffer weggelassen.

• Wenn vor dem Komma gerundet wird, werden die nachfolgenden Ziffern durch Null ersetzt.

712,654 runden auf Zehntel (1 Nachkommastelle)

Ziffer der Zehntelstelle: 6

Nachfolgende Ziffer: $5 \Rightarrow$ aufrunden 6 + 1

Gerundete Zahl: 712,7

712,654 runden auf Hunderter

Ziffer der Hunderterstelle: 7

Nachfolgende Ziffer: $1 \Rightarrow \text{ abrunden } 700$

Gerundete Zahl: 700

712, 9996 runden auf Tausendstel (3 Nachkommastellen)

Ziffer der Tausendstelstelle: 9

Nachfolgende Ziffer: $6 \Rightarrow$ aufrunden 712,999 + 0,001

Gerundete Zahl: 713,000

Wissenschaftliche Zahlendarstellung

• Definition

 $x = m \cdot 10^n$

m - Mantisse 1 < m < 10

n - Exponent

10 - Basis

$$x_1 = m_1 \cdot 10^{n_1} \quad x_2 = m_2 \cdot 10^{n_2}$$

• Multiplikation

$$x_1 \cdot x_2 = m_1 \cdot 10^{n_1} \cdot m_2 \cdot 10^{n_2} = m_1 \cdot m_2 \cdot 10^{n_1 + n_2}$$

$$\begin{array}{l} \bullet \ \, \text{Division} \\ \frac{x_1}{x_2} = \frac{m_1 \cdot 10^{n_1}}{m_2 \cdot 10^{n_2}} = \frac{m_1}{m_2} 10^{n_1 - n_2} \\ \end{array}$$

• Addition

Gleiche Exponenten: $n = n_1 = n_2$

$$x_1 + x_2 = m_1 \cdot 10^n + m_2 \cdot 10^n = (m_1 + m_2)10^n$$

• Subtraktion

$$x_1 - x_2 = m_1 \cdot 10^n - m_2 \cdot 10^n = (m_1 - m_2)10^n$$

 $345 = 3,45 \cdot 10^2$

Komma um 2 Stellen nach links verschieben

 $0,00345 = 3,45 \cdot 10^{-3}$

Komma um 3 Stellen nach rechts verschieben

 $345 \cdot 10^7 = 3,45 \cdot 10^2 \cdot 10^7 = 3,45 \cdot 10^9$

Komma um 2 Stellen nach links verschieben

 $0,00345 \cdot 10^{-4} = 3,45 \cdot 10^{-3} \cdot 10^{-4} = 3,45 \cdot 10^{-7}$ Komma um 3 Stellen nach rechts verschieben

 $x_1 = 5, 2 \cdot 10^3$ $x_2 = 2, 5 \cdot 10^{-2}$

$$x_1 \cdot x_2 = 6, 2 \cdot 10^3 \cdot 2, 5 \cdot 10^{-2} = 6, 2 \cdot 2, 5 \cdot 10^{3-2} = 15, 5 \cdot 10^1 = 1,55 \cdot 10^2$$

$$\frac{x_1}{x_2} = \frac{6, 2 \cdot 10^3}{2, 5 \cdot 10^{-2}} = \frac{6, 2}{2, 5} \cdot 10^{3 - (-2)} = 2, 48 \cdot 10^5$$

Gleiche Exponenten: $2, 5 \cdot 10^{-2} = 0,000025 \cdot 10^{3}$

 $x_1 + x_2 = 6, 2 \cdot 10^3 + 0,000025 \cdot 10^3 = (6, 2 + 0,000025)10^3 =$ $6,200025 \cdot 10^3$

 $x_1 - x_2 = 6, 2 \cdot 10^3 - 0,000025 \cdot 10^3 = (6, 2 - 0,000025)10^3 =$

 $6,199975\cdot 10^3$

1.1.10 Schriftliches Rechnen

Schriftliche Addition

1. Summand + 2.Summand = Summe

Zahlen stellenweise untereinander schreiben.

Komma unter Komma - Einer unter Einer usw.

1.Summand (obere Zahl)

+ 2.Summand (untere Zahl)

Übertragszeile

Summe (Ergebniszeile)

Von rechts beginnend die einzelne Ziffen addieren.

Obere Ziffer + untere Ziffer oder

Obere Ziffer + untere Ziffer + Übertrag

- Ist das Ergenis kleiner als 10, wird das Ergebnis in die Ergebniszeile geschrieben.

- Ist das Ergebnis größer als 9, wird die Einerziffern in die Ergebniszeile geschrieben. Die Zehnerziffer schreibt man in die nächste Spalte der Übertragszeile.

+	$ \begin{array}{c} -5,92 = \\ 89,90 \\ 5,92 \\ \hline 2 \end{array} $	0+2=2 Ergebnis:2 Übertrag:0
+	89, 90 5, 92 <u>1</u> 82	9+9=18 Ergebnis:8 Übertrag:1
+	$ \begin{array}{r} 89,90 \\ 5,92 \\ \underline{11} \\ 5,82 \end{array} $	9+5+1=15 Ergebnis:5 Übertrag:1
+	89, 90 5, 92 1 1 95, 82	8+0+1=9 Ergebnis:9 Übertrag:0

Schriftliche Subtraktion

Minuend - Subtrahend = Differenz

Zahlen stellenweise untereinander schreiben.

Komma unter Komma - Einer unter Einer usw.

Minuend (obere Zahl)

- Subtrahend (untere Zahl)

_Übertragszeile

Differenz (Ergebniszeile)

Von rechts beginnend die einzelne Ziffern subtrahieren.

Obere Ziffer - untere Ziffer oder

Obere Ziffer - (untere Ziffer + Übertrag)

Ist das Ergebnis größer gleich als Null, wird das Ergebnis in die Ergebniszeile geschrieben.

Ist das Ergebnis kleiner als Null, fügt man bei der oberen Ziffer eine Zehnerstelle hinzu, so dass das Ergebnis größer gleich Null wird. Die Einerziffer kommt in die Ergebniszeile. Die Zehnerziffer schreibt man in die nächste Spalte der Übertragszeile.

_	123, 48 $89, 47$	8 - 7 = 1Ergebnis:1
	<u></u>	Übertrag:0
	123, 48	4 - 4 = 0
_	89,47	Ergebnis:0
	01	Übertrag:0
	123, 48	13 - 9 = 4
_	89,47	Ergebnis:4
	1	Übertrag:1
	4,01	
	123, 48	12 - (8 + 1) = 3
_	89,47	Ergebnis:3
	11	Übertrag:1
	34,01	
	123, 48	1 - (0 + 1) = 0
_	89,47	Ergebnis:0
		Übertrag:0
	034,01	

Schriftliche Multiplikation

1. Faktor \cdot 2. Faktor = Produkt

linke Zahl \cdot rechte Zahl = Ergebnis

Die einzelnen Ziffern der rechten Zahl mit der linken Zahl multiplizieren.

Das Ergebnis unter die Ziffer der rechten Zahl schreiben.

Die Ergebnisse addieren.

Die Nachkommastellen der beiden Faktoren addieren und beim Ergebnis das Komma setzen.

```
Schriftliche Multiplikation 34, 61 \cdot 9, 3 = \frac{3461 \cdot 93}{31149} \\ 10383 \\ \hline \hline 321873
Nachkommastellen:2 + 1 = 3 34, 61 \cdot 9, 3 = 321, 873
```

Schriftliche Division

Dividend : Divisor = Quotient

linke Zahl : rechte Zahl = Ergebnis

Enthält der Divisor(rechlte Zahl) ein Komma, wird das Komma beider Zahlen um soviel Stellen nach rechts verschoben, bis der Divisor eine ganze Zahl ist.

Versuch die erste Ziffer (die ersten beiden Ziffer usw.) der linken Zahl durch die rechte Zahl zu teilen, bis man bei der Teilung eine ganze Zahl erhält.

Das Ergebnis der Teilung mit der rechten Zahl multiplizieren und von den verwendeten Ziffern subtrahieren.

Die nächste Ziffer der linken Zahl an das Ergebnis anfügen und wieder versuchen zu teilen.

Ein Komma im Ergebnis entsteht,

- wenn man eine Ziffer, die nach dem Komma steht anfügt.
- wenn die linken Ziffern einer ganzen Zahl aufgebraucht sind und man eine Null anfügt.

15:2 = 15:2 = 7,5
15
- <u>14</u>
10
- <u>10</u>
0
15, 45: 2, 456 =
15450: 2456 = 6, 2
15450
-
7140
- <u>4912</u>
2228
6, 2 Rest 2228

Interaktive Inhalte:

Addition | Subtraktion | Multiplikation | Division

1.1.11 Bruchteile - Prozent - Promille

Bruchteile

- Bruchteil (relativer Anteil) = $\frac{\text{absoluter Anteil}}{\text{Ganze}}$
- \bullet absoluter Anteil = Bruchteil \cdot Ganze
- Ganze = $\frac{\text{absoluter Anteil}}{\text{Bruchteil}}$

Welcher Bruchteil sind 200 € von 800 €? $\frac{200}{800} = \frac{2}{8} = \frac{1}{4}$

Gesucht: absoluter Anteil $\frac{1}{4}$ von 800 \in ?

 $\frac{1}{4}$ · 800 € = 200 €

Gesucht: Ganze $\frac{1}{4}$ sind 200 €? $\frac{200}{4}$ = 800 €

Prozent

•
$$p\% = \frac{p}{100}$$
 p Prozent = p Hundertstel

• Prozentsatz= Bruchteil ·100 %

• Bruchteil=
$$\frac{\text{Prozentsatz}}{100\%}$$

p - Prozentzahl

p% - Prozentsatz

$$p\% = 0,01 = \frac{1}{100} = 1\% p = 1$$

$$p\% = 0,34 = \frac{34}{100} = 34\% p = 34$$

$$p\% = 0,125 = \frac{12,5}{100} = 12,5\% p = 12,5$$

$$p\% = 1,25 = \frac{125}{100} = 125\% p = 125$$

Promille

•
$$p \% = \frac{p}{1000}$$
 p Promille = p Tausendstel

• Promillesatz= Bruchteil ·1000 %

• Bruchteil=
$$\frac{\text{Promillesatz}}{1000\%}$$

p - Promillezahl

p‰ - Promillesatz

$$p\% = 0,001 = \frac{1}{1900} = 1 \% \qquad p = 1$$

$$p\% = 0,034 = \frac{34}{1000} = 34 \% \qquad p = 34$$

$$p\% = 0,125 = \frac{125}{1000} = 125 \% \qquad p = 125$$

$$p\% = 1,25 = \frac{1250}{1000} = 1250 \% \qquad p = 1250$$

1.1.12 Prozentrechnung

Prozentrechnung

• Verhältnisgleichung:
$$\frac{P_w}{p} = \frac{G}{100}$$

$$\bullet \ P_w = \frac{p \cdot G}{100} \qquad P_w = p\% \cdot G$$

$$\bullet \ G = \frac{P_w \cdot 100}{p} \qquad \ G = \frac{P_w}{p\%}$$

$$\bullet \ p = \frac{P_w \cdot 100}{G} \qquad p\% = \frac{P_w}{G}$$

G - Grundwert

p - Prozentzahl

p% - Prozentsatz

 P_w - Prozentwert

Wie viel sind 25% von 800
$$\ \in$$
?

$$P_w = \frac{25 \cdot 800}{100} = 200 \ \in$$

Whe viet shift 25% volt 800 €:
$$P_{w} = \frac{25 \cdot 800 \text{ €}}{100} = 200 \text{ €}$$

$$p\% = 25\% = \frac{25}{100} = 0,25$$

$$P_{w} = 0,25 \cdot 800 \text{ €} = 200 \text{ €}$$

25% sind 200 €.Grundwert?
$$G = \frac{200 \cdot 100}{25} = 800 € \qquad G = \frac{200}{0,25} = 800 €$$

Wie viel Prozent sind 200 € von 800 €?

$$p = \frac{200 \cdot 100}{800} = 25 \qquad p\% = 25\%$$

$$p\% = \frac{200}{800} = 0, 25 = \frac{25}{100} = 25\%$$

Interaktive Inhalte:

$$P_w = \frac{p \cdot G}{100}$$

$$P_w = \frac{p \cdot G}{100} \quad G = \frac{P_w \cdot 100}{p} \quad p = \frac{P_w \cdot 100}{G}$$

$$p = \frac{P_w \cdot 100}{G}$$

1.1.13 Promillerechnung

Promillerechnung

• Verhältnisgleichung: $\frac{P_w}{p} = \frac{G}{1000}$

$$\bullet \ P_w = \frac{p \cdot G}{1000} \qquad P_w = p\%_0 \cdot G$$

$$\bullet \ G = \frac{P_w \cdot 1000}{p} \qquad \ G = \frac{P_w}{p\%_0}$$

$$\bullet \ p = \frac{P_w \cdot 1000}{G} \qquad p\% = \frac{P_w}{G}$$

G - Grundwert

p - Promillezahl

p‰ - Promillesatz

 P_w - Promillewert

Wie viel sind 25‰ von 800 €?

$$P_w = \frac{25 \cdot 800}{1000} = 20 \in$$

$$p\% = \frac{25}{1000} = 0,025$$

$$P_w = 0,025 \cdot 800 \in = 20 \in$$

25‰ sind 20 €.Grundwert?

$$G = \frac{20 \cdot 1000}{25} = 800 \in G = \frac{200}{0,025} = 800 \in$$

Wie viel Promille sind 20 € von 800 €?

$$p = \frac{20 \cdot 1000}{800} = 25 \qquad p\% = 25\%$$

$$p\% = \frac{20}{800} = 0,025 = \frac{25}{1000} = 25\%$$

Interaktive Inhalte:

$$P_w = \frac{p \cdot G}{1000} \quad G = \frac{P_w \cdot 1000}{p} \quad p = \frac{P_w \cdot 1000}{G}$$

$$p = \frac{P_w \cdot 1000}{G}$$

1.1.14 Prozentuale Ab- und Zunahme

Prozentuale Ab- und Zunahme

 \bullet Endwert= Änderungsfaktor \cdot Anfangswert

$$E = q \cdot A$$
 $q = \frac{E}{A}$ $A = \frac{E}{a}$

•Prozentuale Zunahme q > 1

$$q = 1 + \frac{p}{100}$$
 $p = (q - 1) \cdot 100$

Endwert=Anfangswert+Veränderung

•Prozentuale Abnahme 0 < q < 1

$$q = 1 - \frac{p}{100} \qquad p = (1 - q) \cdot 100$$

Endwert=Anfangswert-Veränderung

A - Anfangswert

E - Endwert

q - Änderungsfaktor

p - Prozentuale Zu- bzw. Abnahme

Eine Artikel kostet 200 €.

Der Preis wird um 10% erhöht.

 $q = 1 + \frac{10}{100} = 1.1$ $E = 1.1 \cdot 200 \in = 220 \in$

Der Preis wird um 10% gesenkt.

$$q = 1 - \frac{10}{100} = 0.9$$
 $E = 0.9 \cdot 200 \in 180 \in 180$

Eine Artikel kostet nach Preiserhöhung 220 €.

Der Preis wurde um 10% erhöht.

$$q = 1 + \frac{10}{100} = 1.1$$
 $A = \frac{220}{11} = 200 \in$

 $q=1+\frac{10}{100}=1.1\quad A=\frac{220}{1.1}=200$ € Eine Artikel kostet nach der Preissenkung 180 €.

Der Preis wurde um 10%gesenkt.

$$q = 1 - \frac{10}{100} = 0.9$$
 $A = \frac{180}{0.9} = 200 \in$

Eine Artikel kostet 200 \in .

Nach einer Preiserhöhung kostet er 220 €.

$$q = \frac{220}{200} = 1.1$$
 $p = (1.1 - 1) \cdot 100 = 10\%$

Nach einer Preissenkung kostet er 180 €.

 $q = \frac{180}{200} = 0.9$ $p = (1 - 0.9) \cdot 100 = 10\%$

Interaktive Inhalte:

$$E = q \cdot A$$

$$A = \frac{E}{a}$$

$$p = \frac{E}{A}$$

1.1.15 Potenzen

Definition

$$a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{n-\text{Faktoren}}$$
 $a = \text{Basis n} = \text{Exponent}$
 $a^0 = 1$ $a^1 = a$
 $a^0 = 1$ $a^0 = 1$
 $a^0 = 1$ $a^0 = 1$
 $a^0 = 1$ $a^0 = 1$
 $a^0 = 1$
 $a^0 = 1$
 $a^0 = 1$
 $a^0 = 1$
 $a^0 = 1$

$$2^{3} = 2 \cdot 2 \cdot 2$$

$$x^{4} = x \cdot x \cdot x \cdot x$$

$$4^{0} = 1$$

$$x^{0} = 1$$

$$4^{1} = 4$$

$$x^{1} = x$$

Potenzen multiplizieren

gleiche Basis - Exponenten addieren
$$a^m \cdot a^n = a^{m+n}$$

$$10^m \cdot 10^n = 10^{m+n}$$

$$e^m \cdot e^n = e^{m+n}$$

$$3^2 \cdot 3^5 = 3^{2+5} = 3^7$$

 $x^3 \cdot x^5 = x^{3+5} = x^8$
 $e^3 \cdot e^{-5} = e^{3+(-5)} = e^{-2}$

Potenzen dividieren

gleiche Basis - Exponenten subtrahieren
$$a^m:a^n=\frac{a^m}{a^n}=a^{m-n}$$

$$10^m:10^n=\frac{10^m}{10^n}=10^{m-n}$$

$$e^m:e^n=\frac{e^m}{e^n}=e^{m-n}$$

$$\frac{e^{\frac{7}{5}}}{e^{\frac{5}{3}}} = 3^{7-5} = 3^{2}$$

$$\frac{e^{\frac{5}{5}}}{e^{\frac{5}{3}}} = x^{5-3} = x^{2}$$

$$\frac{e^{\frac{5}{5}}}{e^{-3}} = e^{5-(-3)} = e^{8}$$

Potenz ausklammern

gleicher Exponent - Exponent ausklammer
n
$$a^n\cdot b^n=(ab)^n$$

$$\frac{a^n}{b^n}=(\frac{a}{b})^n$$

$$3^{2} \cdot 5^{2} = (3 \cdot 5)^{2} = 15^{2}$$
$$x^{2} \cdot y^{2} = (x \cdot y)^{2}$$

Potenz in der Potenz

Exponenten multiplizieren
$$(a^n)^m = a^{n \cdot m}$$

 $(10^n)^m = 10^{n \cdot m}$
 $(e^n)^m = e^{n \cdot m}$

$$(2^{3})^{4} = 2^{3 \cdot 4} = 2^{12}$$
$$(x^{2})^{3} = x^{6}$$
$$(x^{2} \cdot 4)^{2} = x^{4} \cdot 4^{2}$$
$$(e^{x})^{2} = e^{2x}$$

Potenzen mit negativem Exponenten

$$a^{-n} = \frac{1}{a^n}$$

$$10^{-n} = \frac{1}{10^n}$$

$$e^{-n} = \frac{1}{e^n}$$

$$2^{-1} = \frac{1}{2} \qquad 3^{-2} = \frac{1}{3^{2}} x^{-2} = \frac{1}{x^{2}} \qquad x^{-3} \cdot y^{-2} = \frac{1}{x^{3}y^{2}}$$

Potenz - Wurzel

$$a^{\frac{1}{n}} = \sqrt[n]{a} \qquad a > 0$$

$$10^{\frac{1}{n}} = \sqrt[n]{10}$$

$$e^{\frac{1}{n}} = \sqrt[n]{e}$$

$$2^{\frac{1}{2}} = \sqrt{2} \quad x^{\frac{1}{2}} = \sqrt{x}$$
$$5^{\frac{1}{3}} = \sqrt[3]{5} \quad 4^{-\frac{1}{2}} = \frac{1}{\sqrt{4}}$$

Potenz mit rationalem Exponenten

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} \qquad a > 0$$

$$10^{\frac{m}{n}} = \sqrt[n]{10^m}$$

$$e^{\frac{m}{n}} = \sqrt[n]{e^m}$$

$$2^{\frac{3}{5}} = \sqrt[5]{2^3}$$

Potenzen mit rationalem (negativ) Exponenten

$$a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}} \qquad a > 0$$

$$10^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{10^m}}$$

$$e^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{e^m}}$$

$$2^{-\frac{3}{5}} = \frac{1}{\sqrt[5]{2^3}}$$

Interaktive Inhalte:

hier klicken

1.1.16 Wurzeln

Wurzel - Potenz

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

n - Wurzelexponent a - Radikand

Quadratwurzel: \sqrt{a}

Kubikwurzel: $\sqrt[3]{a}$

$$\sqrt{2} = 2^{\frac{1}{2}} \quad \sqrt{x} = x^{\frac{1}{2}}$$
$$\sqrt[3]{5} = 5^{\frac{1}{3}} \quad \frac{1}{\sqrt{4}} = 4^{-\frac{1}{2}}$$

Wurzeln multiplizieren

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$
$$a^{\frac{1}{n}} \cdot b^{\frac{1}{n}} = (ab)^{\frac{1}{n}}$$

gleiche Exponenten - Exponent ausklammern

$$\sqrt[3]{2} \cdot \sqrt[3]{4} = \sqrt[3]{2 \cdot 4} = \sqrt[3]{8} = 2$$

Wurzeln dividieren

$$\sqrt[n]{a}: \sqrt[n]{b} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[n]{a}: \sqrt[n]{b} = \sqrt[n]{\frac{a}{b}}$$

$$\frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = \left(\frac{a}{b}\right)^{\frac{1}{n}}$$

gleiche Exponenten - Exponent ausklammern

$$\sqrt[3]{54}$$
: $\sqrt[3]{2} = \sqrt[3]{\frac{54}{2}} = \sqrt[3]{27} = 3$

Wurzel in der Wurzel

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[mn]{a}$$
$$(a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}}$$

$$\sqrt[2]{\sqrt[3]{5}} = \sqrt[6]{5}$$

Nenner rational machen

Wurzel (irrationale Zahl) aus dem Nenner entfernen

• Erweitern des Bruchs mit der Wurzel

$$\frac{a}{b\sqrt{c}} = \frac{a\sqrt{c}}{b\sqrt{c}\sqrt{c}} = \frac{a\sqrt{c}}{b(\sqrt{c})^2} = \frac{a\sqrt{c}}{bc}$$
$$\frac{a}{b\sqrt{c+d}} = \frac{a\sqrt{c+d}}{b\sqrt{c+d}\sqrt{c+d}} = \frac{a\sqrt{c+d}}{b(\sqrt{c+d})^2} = \frac{a\sqrt{c+d}}{b(c+d)}$$

• Erweitern mit der 3. Binomischen Formel
$$\frac{a}{b+\sqrt{c}} = \frac{a(b-\sqrt{c})}{(b+\sqrt{c})(b-\sqrt{c})} = \frac{a(b-\sqrt{c})}{b^2-(\sqrt{c})^2} = \frac{a(b-\sqrt{c})}{b^2-c}$$

Erweitern des Bruchs mit der Wurzel Enwertern des Brutins int der Walzer $\frac{3}{5\sqrt{6}} = \frac{3\sqrt{6}}{5\sqrt{6}\sqrt{6}} = \frac{3\sqrt{6}}{5(\sqrt{6})^2} = \frac{3\sqrt{6}}{30}$ $\frac{3}{5\sqrt{x+2}} = \frac{3\sqrt{x+2}}{5\sqrt{x+2}\sqrt{x+2}} = \frac{3\sqrt{x+2}}{5(\sqrt{x+2})^2} = \frac{3\sqrt{x+2}}{5(x+2)}$

Erweitern zur 3. Binomischen Formel $\frac{3}{5+\sqrt{2}} = \frac{3(5-\sqrt{2})}{(5+\sqrt{2})(5-\sqrt{2})} = \frac{3(5-\sqrt{2})}{5^2-(\sqrt{2})^2} = \frac{3(5-\sqrt{2})}{5^2-2}$ $15 - 3\sqrt{2}$ 23 $\frac{3}{\sqrt{x} + \sqrt{2}} = \frac{3(\sqrt{x} - \sqrt{2})}{(\sqrt{x} + \sqrt{2})(\sqrt{x} - \sqrt{2})} = \frac{3(\sqrt{x} - \sqrt{2})}{(\sqrt{x})^2 - (\sqrt{2})^2}$

 $3(\sqrt{x}-\sqrt{2})$

Interaktive Inhalte:

hier klicken

1.1.17 Logarithmen

Definition

$$c = \log_b a \Leftrightarrow b^c = a$$

$$b=Basis\;a=Numerus$$

Basis: 10

$$log_{10}x = lgx$$

$$10^{lgx} = x$$

$$lg10^x = x$$

Basis: e = 2,718.. (eulersche Zahl)

$$log_e x = \ln x$$

$$e^{\ln x} = x$$

$$\ln e^x = x$$

$$3 = \log_2 8 \Leftrightarrow 2^3 = 8$$

$$log_e 3 = ln 3$$
$$e^{ln 3} = 3$$

$$e^{\text{m s}} = 3$$
$$\ln e^3 = 3$$

$$log_{10} 2 = lg2
10^{lg3} = 3$$

$$10^{lg3} - 3$$

$$lg10^3 = 3$$
$$lg10^3 = 3$$

$$lg10^{\circ} =$$

Logarithmen addieren

$$\log_c a + \log_c b = \log_c (a \cdot b)$$

$$\lg a + \lg b = \lg(a \cdot b)$$

$$\ln a + \ln b = \ln(a \cdot b)$$

$$\begin{aligned} log_24 + log_28 &= log_2(4\cdot 8) = log_232 \\ log_3x + log_3y &= log_3(x\cdot y) \end{aligned}$$

Logarithmen subtrahieren

$$\log_c a - \log_c b = \log_c \frac{a}{b}$$

$$\lg a - \lg b = \lg \frac{a}{b}$$

$$\ln a - \ln b = \ln \frac{a}{b}$$

$$\log_3 5 - \log_3 7 = \log_3 \frac{5}{7}$$

$$\ln 5 - \ln 7 = \ln \frac{5}{7}$$

Logarithmus von der Potenz

$$\begin{aligned} log_c a^n &= n \log_c a \\ log_a a^n &= n \log_a a = n \\ lg10^n &= n \end{aligned}$$

$$lne^n = n$$

$$\log_3 5^2 = 2\log_3 5$$

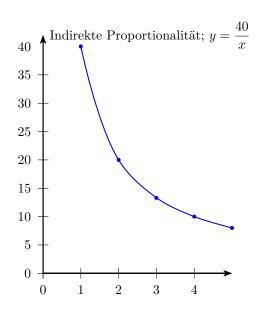
Basisumrechnung von Logarithmen

$$\log_b a = \frac{\log_c a}{\log_a b} = \frac{\lg a}{\lg b} = \frac{\ln a}{\ln b}$$

$$\log_5 3 = \frac{\log_2 3}{\log_2 5} = \frac{\lg 3}{\lg 5} = \frac{\ln 3}{\ln 5} = 0,68$$

Logarithmus von der Wurzel

$$\log_c \sqrt[n]{a} = \frac{1}{n} \log_c a$$


$$\log_4 \sqrt[5]{3} = \tfrac{1}{5} \log_4 3$$

Interaktive Inhalte:

hier klicken

1.1.18 Proportionalität

Direkte Proportionalität

y ist ein vielfaches von x

 $y = m \cdot x$

Proportionalitätsfaktor: m

v ist direkt proportional zu x: $y \sim x$

Direkte Proportionalität = quotientengleich

$$m = \frac{y_1}{x_1} = \frac{y_2}{x_2} = \frac{y_3}{x_3} = \frac{y_4}{x_4}..$$

Funktionsgleichungen:

$$y = m \cdot x$$
 $x = \frac{y}{m}$ $m = \frac{y}{x}$

$$x = \frac{1}{2}$$

$$m=\frac{y}{2}$$

Graph: Urspungsgerade

Ein Tafel Schokolade kostet 2 \in .

Zwei Tafeln Schokolade kosten $4 \in$.

x= Anzahl der Tafeln

y= Preis der Tafeln

m= Preis einer Tafel

 $y = 2 \cdot x$

Wieviel kosten 5 Tafeln?

 $y = 2 \cdot 5 = 10$

Wieviel Tafeln bekommt man für 12 \in ?

$$x = \frac{12}{2} = 6$$

Tabelle:

 $\label{eq:decomposition} \mbox{Direkte Proportionalit"at} = \mbox{quotientengleich}$

$$m = \frac{2}{1} = \frac{4}{2} = \frac{6}{3} = \frac{8}{4} = 2$$

Indirekte Proportionalität

y mal x ist konstant

 $k = y \cdot x$

y ist indirekt proportional zu x: $y \sim \frac{1}{x}$

Indirekte Proportionalität = produktgleich

Tabelle:

$$k = y_1 \cdot x_1 = y_2 \cdot x_2 = y_3 \cdot x_3 = y_4 \cdot x_4...$$

Funktionsgleichungen:

$$y = \frac{k}{x} \qquad x = \frac{k}{y} \qquad k = y \cdot x$$

$$k = y \cdot x$$

Graph: Hyperbel

10 Arbeiter benötigen 4 Tage

Wie lange brauchen 20 Arbeiter?

x = Arbeiter

y= Tage

k= Anzahl der Tage bei einem Arbeiter

 $k = 10 \cdot 4 = 40$

$$y = \frac{40}{20} = 2$$

Tabelle:

Arbeiter
 1
 2
 3
 4
 5

 Tage
 40
 20

$$13\frac{1}{3}$$
 10
 8

Indirekte Proportionalität = produktgleich

$$k = 1 \cdot 4 = 2 \cdot 20 = 3 \cdot 13\frac{1}{3} = 4 \cdot 10 = 5 \cdot 8 = 40$$

Funktionsgleichung: $y = \frac{30}{x}$

Dreisatz - Verhältnisgleichung

$$\frac{g_1}{x_1} = \frac{g_2}{x_2}$$

$$\frac{x_1}{y_1} = \frac{x_2}{y_2}$$

$$y_1 : x_1 = y_2 : x_2$$

$$y_1 \cdot x_2 = x_1 \cdot y_2$$

$$y_1 = \frac{y_2 \cdot x_1}{x_2}$$

$$y_2 = \frac{y_1 \cdot x_2}{}$$

$$x_1 = \frac{x_2^{x_2} y_1}{y_2}$$

$$y_1 = \frac{y_2 \cdot x_1}{x_2} \qquad y_2 = \frac{y_1 \cdot x_2}{x_1}$$
$$x_1 = \frac{x_2 \cdot y_1}{y_2} \qquad x_2 = \frac{x_1 \cdot y_2}{y_1}$$

7 Tafeln Schokolade kosten 14 €.

Wieviel kosten 5 Tafeln?

x= Anzahl der Tafeln

y= Preis der Tafeln

$$\frac{y_1}{x_1} = \frac{y_2}{x_2}$$

$$\frac{14}{7} = \frac{y_2}{5}$$

$$y_2 = \frac{14 \cdot 5}{7} = 10$$

Grundlagen Algebra

1.1.19Zahlensysteme

0_{10}	0_2	016	10_{10}	1010_{2}	A_{16}	20_{10}	10100_2	14_{16}	30_{10}	11110_{2}	$1E_{16}$	40_{10}	101000_2	28_{16}
110	1_2	116	11_{10}	1011_{2}	B_{16}	2110	10101_2	15_{16}	31_{10}	1111112	$1F_{16}$	41_{10}	101001_2	29_{16}
2_{10}	10_{2}	2_{16}	12_{10}	1100_{2}	C_{16}	22_{10}	10110_{2}	16_{16}	32_{10}	100000_2	20_{16}	42_{10}	101010_2	$2A_{16}$
310	11_{2}	316	13_{10}	1101_{2}	D_{16}	2310	10111_2	17_{16}	3310	100001_2	21 ₁₆	43_{10}	101011_2	$2B_{16}$
4_{10}	100_{2}	4_{16}	14_{10}	1110_{2}	E_{16}	24_{10}	11000_2	18_{16}	34_{10}	100010_2	2216	44_{10}	101100_2	$2C_{16}$
5_{10}	101_{2}	5_{16}	15_{10}	1111_{2}	F_{16}	25_{10}	11001_2	19_{16}	35_{10}	100011_2	23 ₁₆	45_{10}	101101_2	$2D_{16}$
6_{10}	110_{2}	6_{16}	16_{10}	10000_2	10_{16}	26_{10}	11010_2	$1A_{16}$	36_{10}	100100_2	24_{16}	46_{10}	101110_2	$2E_{16}$
7_{10}	111_{2}	7_{16}	17_{10}	10001_2	11 ₁₆	27_{10}	11011_2	$1B_{16}$	37_{10}	100101_2	25_{16}	47_{10}	1011111_2	$2F_{16}$
810	1000_{2}	816	1810	10010_2	1216	28_{10}	11100_2	$1C_{16}$	3810	100110_2	2616	4810	110000_2	30_{16}
910	1001_2	916	19_{10}	10011_2	13 ₁₆	29_{10}	11101_{2}	$1D_{16}$	39_{10}	100111_2	27 ₁₆	49_{10}	110001_2	31_{16}

Zahl mit Basis B in Dezimalzahl

• Definition

$$Z_B = \sum_{i=0}^n Z_i B^i = Z_n B^n + ... + Z_1 B^1 + Z_0 B^0$$

Ziffern: $Z_n, ..., Z_1, Z_0$

Basis:	 B^3	B^2	B^1	B^0
Ziffern:	 Z_3	Z_2	Z_1	Z_0

Ziffern:0; 1; 2, 3; 4; 5; 6; 7; 8; 9; A = 10; B=11; C = 12;

$$D = 13; E = 14; F = 15$$

• Dezimalsystem

Ziffern: 0,1,2,3,4,5,6,7,8,9Basis: 10

$$Z_{10} = \sum_{i=0}^{n} Z_i 10^i = Z_n 10^n + \dots + Z_1 10^1 + Z_0 10^0$$

• Dualsystem (Binärsystem)

Basis: 2 Ziffern:0,1

$$Z_2 = \sum_{i=0}^n Z_i 2^i = Z_n 2^n + \dots + Z_1 2^1 + Z_0 2^0$$

• Hexadezimalsystem

Ziffern:0,1,2,3,4,5,6,7,8,9,A,B,C,D,F Basis: 16

$$Z_{16} = \sum_{i=0}^{n} z_i 16^i = Z_n 16^n + \dots + Z_1 16^1 + Z_0 16^0$$

	427_{10}	=			
10^{2}	10^{1}	10^{0}			
4	2	7			
$4 \cdot 10^2 + 2 \cdot 10^1 + 7 \cdot 10^0 =$					
$4 \cdot 100 + 2 \cdot 10 + 7 \cdot 1$					

 $110101011_2 =$

2^8	2^7	2^{6}	2^{5}	2^4	2^3	2^2	2^1	2^0
1	1	0	1	0	1	0	1	1
$1 \cdot 2^8 + 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 +$								

$$1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 =$$

$$1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 =$$

$$1 \cdot 256 + 1 \cdot 128 + 0 \cdot 64 + 1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 +$$

$$0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 427_{10}$$

$$1AB_{16} = \begin{array}{|c|c|c|c|c|} \hline 16^2 & 16^1 & 16^0 \\ \hline 1 & A = 10 & B = 11 \\ \hline \end{array}$$

$$1 \cdot 16^2 + 10 \cdot 16^1 + 11 \cdot 16^0 =$$

$$1 \cdot 256 + 10 \cdot 16 + 11 \cdot 1 = 427_{10} = 427$$

Dezimalzahl in Zahl mit Basis B

- Dezimalzahl durch die neue Basis teilen
- Ergebnis ist ein ganzzahliger Anteil und der Rest
- ganzzahligen Anteil wieder teilen
- usw.
- bis der ganzzahlige Anteil gleich Null ist
- die Ziffern der Reste von unten nach oben abschreiben

 $427 = 427_{10}$ 427:2=213 Rest: 1213:2 = 106 Rest: 1

106:2=53 Rest:0

 $427 = 427_{10}$

53:2=26 Rest: 1

427:16=26 Rest:11=B

26:2=13 Rest:0

26:16=1 Rest:10=A

13:2=6 Rest: 1

1:16=0 Rest: 1

6:2=3 Rest:0

 $427_{10} = 1AB_{16}$

3:2=1 Rest:1

1:2=0 Rest: 1

 $427_{10} = 110101011_2$

Interaktive Inhalte:

Zahlensysteme

1.1.20 Folgen und Reihen

	a_1	a_2	a_3	a_4	a_5	a_6	a_7
Arithmetische Folge	3	7	11	15	19	23	
Geometrische Folge	2	6	18	54	152	486	

Arithmetische Folge

$$a_1; a_2; a_3; a_4; \dots a_n \quad n \in \mathbb{N}$$

 $a_1; a_1 + d; a_1 + 2d; \dots; a_1 + (n-1)d; \dots$
Differenz: $d = a_{n+1} - a_n$
explizite Darstellung: $a_n = a_1 + (n-1)d$
rekursive Darstellung: $a_{n+1} = a_n + d$
Summe:
 $s_n = \sum_{k=1}^n (a_k) = a_1 + a_2 + a_3 + \dots a_n$
 $s_n = \sum_{k=1}^n (a_k) = \frac{n(a_1 + a_n)}{2} = \frac{n}{2} (2a_1 + (n-1) \cdot d)$

Geometrische Folge

$$a_1; a_2; a_3; a_4; \dots a_n \quad n \in \mathbb{N}$$

$$a_1; a_1q; a_1q^2; \dots; a_1q^{n-1};$$
Quotient: $q = \frac{a_{n+1}}{a_n}$
explizite Darstellung: $a_n = a_1q^{n-1}$
rekursive Darstellung: $a_{n+1} = a_n \cdot q$
Summe:
$$s_n = \sum_{k=1}^n (a_k) = a_1 + a_2 + a_3 + \dots a_n$$

$$s_n = \sum_{k=1}^n a_1 \cdot q^{k-1} = a_1 \frac{q^n - 1}{q-1} = a_1 \frac{1 - q^n}{1 - q}$$

Fibonacci-Folge

$$a_1=1; a_2=1$$

Addition der beiden vorherigen Zahlen.
rekursive Darstellung: $a_n=a_{n-1}+a_{n-2} \quad n\geq 3$
explizite Darstellung:
$$a_n=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right)$$

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; .. rekursive Darstellung:
$$a_1 = 1; a_2 = 1$$

$$a_3 = 1 + 1 = 2 \quad a_4 = 1 + 2 = 3$$

$$a_5 = 2 + 3 = 5 \quad a_6 = 3 + 5 = 8$$
.. explizite Darstellung:
$$a_5 = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^6 - \left(\frac{1 - \sqrt{5}}{2} \right)^6 \right) = 8$$

Grundlagen Algebra

Spezielle Folgen und Reihen

•Natürliche Zahlen: 1; 2; 3; 4; ...n

Summe:

$$s_n = \sum_{i=1}^n i = \frac{n}{2}(n+1)$$

Geraden Zahlen: $a_n = 2; 4; 6; 8; ...2n$

$$s_n = \sum_{i=1}^n 2i = n(n+1)$$

•Ungeraden Zahlen: 1; 3; 5; 7; ..2n-1

Summe:

$$s_n = \sum_{i=1}^n (2i - 1) = n^2$$

Addiert man die ersten n ungeraden Zahlen, so ist die Summe n^2 .

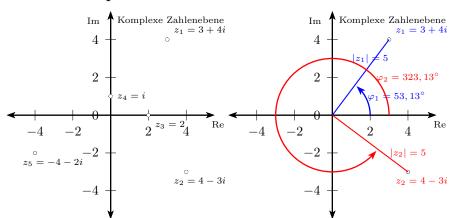
• Quadratzahlen: 1; 4; 9; 16; .. n^2

Summe:

$$s_n = \sum_{i=1}^n i^2 = \frac{n}{6}(n+1)(2n+1)$$

• Kubikzahlen: $1, 8, 27, 64, 125, 216, 343, ...n^3$

$$s_n = \sum_{i=1}^n i^3 = (\frac{n}{2}(n+1))^2 = \frac{n^2}{4}(n+1)^2$$


Die Summe der ersten 100 natürlichen Zahlen. $s_{100} = \sum_{i=1}^{100} i =$ $\frac{100}{2}(100+1) = 5050$

Die Summe der ersten 6 ungeraden Zahlen. $s_6 = 1 + 3 +$ 5 + 7 + 9 + 11 = 36

$$s_6 = \sum_{i=1}^{6} (2i - 1) = 6^2 = 36$$

Addiert man die ersten 6 ungeraden Zahlen, so ist die Summe

1.1.21Komplexe Zahlen

Imaginäre Einheit

Die komplexen Zahlen C sind eine Erweiterung der reelen Zahlen \mathbb{R} , um die imaginäre Einheit i (j). Die reelen Zahlen \mathbb{R} sind eine echte Teilmenge der komplexen Zahlen \mathbb{C} . $\mathbb{R} \subset \mathbb{C}$ $i^2 = -1$

$$i^{2} = -1$$
 $i^{4n} = 1$ $i^{4n+1} = i$ $i^{4n+2} = -1$ $i^{4n+3} = -i$
 $n \in \mathbb{Z}$

$$i^3 = -i$$
 $i^4 = 1$ $i^5 = i$ $i^6 = -1$ $i^7 = -i$

Lösung von Gleichungen in \mathbb{C}

$$x^2 + 1 = 0$$
 $x \in \mathbb{R}$ $\mathbb{L} = \{\}$
 $x^2 = -1$ $x \in \mathbb{C}$ $\mathbb{L} = \{i\}$
 $x = \sqrt{-1}$

$$x^{2} + 4 = 0 x^{2} + 2x + 5 = 0$$

$$x^{2} = -4$$

$$x = \sqrt{-4}$$

$$x = \sqrt{4}\sqrt{-1}$$

$$x = 2i$$

$$x_{1/2} = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot 5}}{-2 \pm \sqrt{-16}}$$

$$x_{1/2} = \frac{-2 \pm 4i}{2}$$

$$x_{1} = \frac{-2 + 4i}{2}$$

$$x_{1} = -1 + 2i$$

$$x_{2} = -1 - 2i$$

Kartesische Form der komplexen Zahl

```
z = x + iy
x = \operatorname{Re} z
                    y = \operatorname{Im} z
         Realteil
         Imaginärteil
```

$$\begin{array}{lll} z_1 = 3 + 4i & x = Re(z_1) = 3 & y = Im(z_1) = 4 \\ z_2 = 4 - 3i & x = Re(z_2) = 4 & y = Im(z_2) = -3 \\ z_3 = 2 & x = Re(z_3) = 2 & y = Im(z_3) = 0 \\ z_4 = i & x = Re(z_4) = 0 & y = Im(z_4) = 1 \\ z_5 = -4 - 2i & x = Re(z_5) = -4 & y = Im(z_5) = -2 \end{array}$$

Polarformen der komplexen Zahl

 \bullet Exponentialform

$$z=re^{i\varphi}$$

•Trigonometrische Form

$$z = r(\cos\varphi + i\sin\varphi)$$

Betrag von z

Argument, Winkel, Phase

DEG/RAD

 \bullet Exponentialform

Gradmaß (DEG): $z_1 = 5e^{i53,13^{\circ}}$

Bogenmaß (RAD): $z_1 = 5e^{i0,93}$

ulletTrigonometrische Form

Gradmaß (DEG): $z_2 = 5(\cos 53, 13^{\circ} + i \sin 53, 13^{\circ})$

Bogenmaß (RAD): $z_2 = 5(\cos 0, 93 + i \sin 0, 93)$

Konjugiert komplexe Zahl z^*

$$z = x + iy$$
 $z^* = \bar{z} = x - iy$
 $z = re^{i\varphi}$ $z^* = re^{-i\varphi}$
 $z = r(\cos \varphi + i \sin \varphi)$ $z^* = r(\cos \varphi - i \sin \varphi)$

$$z_1 = 3 + 4i z_1^* = 3 - 4i z_1 = 5e^{i53,13^{\circ}} z_1^* = 5e^{-i53,13^{\circ}} z_1 = 5(\cos 53, 13^{\circ} + i \sin 53, 13^{\circ}) z_1^* = 5(\cos 53, 13^{\circ} - i \sin 53, 13^{\circ})$$

Rechnungen in kartesischer Form

 $z_1 = x_1 + iy_1$ $z_2 = x_2 + iy_2$

 $\bullet {\rm Addition}$

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2)$$

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

•Subtraktion

$$z_1 - z_2 = (x_1 + iy_1) - (x_2 + iy_2)$$

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$$

Multiplikation

$$z_1 \cdot z_2 = (x_1 + iy_1)(x_2 + iy_2)$$

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i (x_1 y_2 + x_2 y_1)$$

 \bullet Division

$$\begin{split} \frac{z_1}{z_2} &= \frac{x_1 + iy_1}{x_2 + iy_2} \\ \frac{z_1}{z_2} &= \frac{(x_1 + iy_1) \left(x_2 - iy_2\right)}{\left(x_2 + iy_2\right) \left(x_2 - iy_2\right)} \\ \frac{z_1}{z_2} &= \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} \end{split}$$

•Multiplikation mit konjugiert Komplexen

$$z_1 z_1^* = (x_1 + iy_1) (x_1 - iy_1)$$

$$z_1 z_1^* = x_1^2 + y_1^2$$

$$zz^* = |z|^2$$

$$z_1 = 2 + 3i$$
 $z_2 = 4 + 5i$

$$z_1 + z_2 = (2+3i) + (4+5i) = (2+4) + (3+5)i = 0$$

$$6 + 8i$$

Subtraktion

$$z_1 - z_2 = (2+3i) - (4+5i) = (2-4) + i(3-5)$$

$$= -2 - 2i$$

Multiplikation

$$z_1 \cdot z_2 = (2+3i)(4+5i) = (2 \cdot 4 - 3 \cdot 5) + (2 \cdot 5 + 4 \cdot 3)i$$

$$= -7 + 22i$$

Division

$$\frac{z_1}{z_2} = \frac{2+3i}{4+5i} = \frac{(2+3i)(4-5i)}{(4+5i)(4-5i)} = \frac{2\cdot 4+3\cdot 5}{4^2+5^2} + \frac{4\cdot 3-2\cdot 5}{4^2+5^2}i = \frac{23}{41} - \frac{2}{41}i$$

Multiplikation mit konjugiert Komplexen

$$z_1 z_1^* = (2+3i)(2-3i)$$

$$z_1z_1^* = 2^2 + 3^2$$

$$zz^* = 13$$

Rechnungen in Polarform

$$z_1 = r_1 e^{i\varphi_1} \quad z_2 = r_2 e^{i\varphi_2}$$

ullet Multiplikation

$$z_1 \cdot z_2 = r_1 e^{i\varphi_1} \cdot r_2 e^{i\varphi_2} = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$$

ullet Division

$$\frac{z_1}{z_2} = \frac{r_1 e^{i\varphi_1}}{r_2 e^{i\varphi_2}} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$$

 Potenz

$$z^n = \left(re^{i\varphi}\right)^n = r^n e^{in\varphi}$$

$$z_1 = 5e^{i53,13^{\circ}}$$
 $z_2 = 5e^{i323,13^{\circ}}$

 $\bullet {\rm Multiplikation}$

Beträge multiplizieren und Argumente addieren

$$z_1 \cdot z_2 = 5 \cdot 5e^{i(53,13^\circ + 323,13^\circ)} = 25e^{i376,26^\circ} = 25e^{i16,26^\circ}$$

ullet Division

Beträge dividieren und Argumente subtrahieren

$$\frac{z_1}{z_2} = \frac{5e^{i53,13^{\circ}}}{5e^{i323,13^{\circ}}} =$$

$$= e^{i(53,13^{\circ} - 323,13^{\circ})} = e^{-i270^{\circ}} = e^{i90^{\circ}}$$

Kartesische Form in Polarform

$$z = x + iy \quad \text{in} \quad z = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}$$

$$r = \sqrt{x^2 + y^2}$$

$$\varphi' = \arctan(\left|\frac{y}{x}\right|)$$

	y	x
I. Quadrant	+	+
II. Quadrant	+	-
III. Quadrant	-	-
IV. Quadrant	-	+

	'	
	DEG	RAD
I. Quadrant	$\varphi = \varphi'$	$\varphi = \varphi'$
II. Quadrant	$\varphi = 180^{\circ} - \varphi'$	$\varphi = \pi - \varphi'$
III. Quadrant	$\varphi = 180^{\circ} + \varphi'$	$\varphi = \pi + \varphi'$
IV. Quadrant	$\varphi = 360^{\circ} - \varphi'$	$\varphi = 2\pi - \varphi'$

$$z_1 = 3 + 4i$$

$$r = \sqrt{3^2 + 4^2} = 5$$

$$\varphi' = \arctan\left(\left|\frac{4}{3}\right|\right)$$

$$\varphi' = 53, 13^{\circ}$$

$$y = 4 > 0 \land x = 3 > 0 \Rightarrow \text{ I. Quadrant}$$

$$\varphi = 53, 13^{\circ}$$

$$z_1 = 5e^{i53, 13^{\circ}}$$

$$z_1 = 5(\cos 53, 13^{\circ} + i\sin 53, 13^{\circ})$$

$$z_2 = 4 - 3i$$

$$r = \sqrt{4^2 + 3^2} = 5$$

$$\varphi = \arctan\left(\left|\frac{-3}{4}\right|\right)$$

 $\varphi=\arctan\left(\left|\frac{-3}{4}\right|\right)$ $\varphi'=36,87^\circ$ Je nach Vorzeichen von x und y den Quadranten wählen.

be factively experiment volta and y define a value $y = -3 < 0 \land x = 4 > 0 \Rightarrow IV$. Quadrant

 $y = -3 < 0 \land x = 4 > 0 \Rightarrow \text{IV. Quadrant}$

Den Winkel in den Quadranten umrechnen.

$$\varphi = 360^{\circ} - 36,87^{\circ} = 323,13^{\circ}$$

 $z_2 = 5e^{i323,13^{\circ}}$

Polarform in kartesische Form

$$z = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}$$
 in $z = x + iy$
 $x = r \cos \varphi$ $y = r \sin \varphi$

$$z_1 = 5e^{i53,13^{\circ}}$$

 $x = 5\cos 53, 13^{\circ} = 3$
 $y = 5\sin 53, 13^{\circ} = 4$
 $z_1 = 3 + 4i$

Interaktive Inhalte:

Rechungen:z = x + iy

Rechungen: $z_1 = r_1 e^{i\varphi_1}$

Polarform in Kartesische Form

Kartesische Form in Polarform

Algebra Terme

1.2 Terme

1.2.1 Grundlagen

Definition

Terme sind sinnvolle Verknüpfungen $(+,-,\cdot,/)$ von Koeffizienten (Zahlen) und Variablen (Buchstaben: x,y,z,a...).

Eine Variable ist ein Platzhalter für eine Zahl.

Physikalische und geometrische Formeln sind Terme.

Terme können mit Hilfe des Kommutativgesetzes, Assoziativgesetzes und Distributivgesetzes umgeformt werden.

- konstanter Term: 2

- linearer Term: 5x

- quadratischer Term: $6x^2$

- weitere Terme:

 $\begin{array}{ll} 3 \cdot x - 4 & 2yx - 4y \\ 3a - 2b & 3zx - 2xu \\ x^2 - 3x^2 - x^2 & yx^2 - 3zx^2 - ux^2 \\ 5x^2y - 7x^2 & 5e^2y - 2e^3 \end{array}$

 $V = l \cdot b \cdot h$ $\rho = \frac{m}{V}$ - keine Terme:

4 + *4 /4, -@

Schreibweisen

 \bullet Man darf das Malzeichen vor der Variable und vor der Klammer weglassen.

$$a \cdot x = ax$$

$$a \cdot (x+b) = a(x+b)$$

• Den Faktor 1 vor einer Variable kann man weglassen.

$$1 \cdot x = 1x = x$$

• Zahlen schreibt man vor die Variable

$$x \cdot a = ax$$

$3 \cdot x = 3x$ $2 \cdot y \cdot 3 = 6y$ $a \cdot x = ax$ $3 \cdot (x - 2) = 3(x - 2)$ $x \cdot y \cdot 5 = 5xy$

Termwert - Termname

Jedem Term kann man einen Namen zuweisen. In Klammern kann man die Variablen des Terms angeben.

Name(Variable 1, Variable 2...)=Term

Ersetzt man die Variablen eines Terms durch Zahlen, berechnet man den Wert des Terms.

Umfang des Rechtecks:

U(a;b) = 2a + 2b oder U = 2a + 2b

Name des Terms: U Variable: a,b Term:2a+2b

Berechnen der Termwerts:a = 5 b = 6

 $U(5;6) = 2 \cdot 5 + 2 \cdot 6 \text{ oder } U = 2 \cdot 5 + 2 \cdot 6$

U(5;6) = 22 oder U = 22

Termwert: 22

Linearer Term (Funktion)

f(x) = 2x + 3 oder f: y = 2x + 3

Name des Terms: f Variable: x Term: 2x+3

Berechnen der Termwerts:x = 5

 $f(5) = 2 \cdot 5 + 3$ oder $y = 2 \cdot 5 + 3$

f(5) = 13 oder y = 13

Termwert:13

1.2.2 Umformung von Termen

Addieren und Subtrahieren von Termen

Zwei Terme sind gleichartig, wenn sie aus den gleichen Variablen (Klammerausdrücke) mit den jeweiligen gleichen Exponenten bestehen. Gleichartige Terme kann man durch addieren (subtrahieren) der Koeffizienten zusammenfassen:

Gleichartige Terme 2x und 3x2x + 3x = 5xGleichartige Terme -2x und -3xGleichartige Terme 6y und -5y-2x + 6y - 5y - 3x = -5x + y $x^3 + 4x^3 = 5x^3$ $2x^2 + 3x^2 = 5x^2$ $5x^2y + 7x^2y = 12x^2y$ 2xy + 3xy + 4z + 5z = 5xy + 9z $3e^x - 2e^x = e^x$ $(x^2 - 5x - 27) - (x + 3) =$ $x^2 - 5x - 27 - x - 3 = x^2 - 6x - 30$ Nicht gleichartige Terme kann man nicht zusammenfassen. 2x + 3y + 3 = $2x^2 + 3x + 2 =$ $x^3 + 5x^4 =$ $3e^{2x} - 2e^x =$

Multiplizieren und Dividieren von Termen

Die Zahlen multiplizieren (dividieren) und gleiche Variablen zusammenfassen (Potenzgesetze).

$$2x \cdot 3x = 6x^{2}$$

$$2x \cdot 3x^{2} = 2 \cdot 3 \cdot x \cdot x^{2} = 6 \cdot x^{3}$$

$$6x \cdot x^{2} = 6 \cdot x^{3}$$

$$\frac{9x}{3x} = 3$$

$$\frac{12x}{3x^{2}} = \frac{4}{x}$$

Addieren und Subtrahieren von Summentermen

• Vorzeichen vor Summenterm

$$+(a + b) = a + b$$
 $+(a - b) = a - b$
 $-(a + b) = -a - b$ $-(a - b) = -a + b$

• Summenterm und Summenterm

$$(a + b) + (c + d) = a + b + c + d$$

 $(a + b) - (c + d) = a + b - c - d$
 $(a - b) - (c - d) = a - b - c + d$

$$(2x+1) + (x+3) = 2x + 1 + x + 3 = 3x + 4$$

$$(2x+1) + (x-3) = 2x + 1 + x - 3 = 3x - 2$$

$$(2x+1) - (x+3) = 2x + 1 - x - 3 = x - 2$$

$$-(2x+1) + (x+3) = -2x - 1 + x + 3 = -x + 2$$

Multiplizieren von Summentermen - Ausmultiplizieren

Ein Produkt in eine Summe(Differenz) umwandeln. Jedes Glied mit jedem multiplizieren.

• Faktor mal Summenterm

$$c \cdot (a+b) = (a+b) \cdot c = ac + bc$$

• Summenterm mal Summenterm

$$(a+b) \cdot (c+d) = ac + ad + bc + bd$$

$$(a+b)\cdot(c+d+e) = ac + ad + ae + bc + bd + be$$

• 3 Faktoren

$$c \cdot (a+b) \cdot (d+e) = (ac+bc) \cdot (d+e) =$$

 $acd + ace + bcd + bce$

$$(a+b)\cdot(c+d)\cdot(e+f) = (ac+ad+bc+bd)\cdot(e+f) =$$

$$ace + acf + ade + adf + bce + bcf + bde + bdf$$

 $(2x+1) \cdot (x-3) =$ $2x \cdot x + 2x \cdot (-3) + 1 \cdot x + 1 \cdot (-3) =$ $2x^2 + (-6x) + x + (-3) = 2x^2 - 5x - 3$ $(x^2 - 5x - 27) \cdot (x+3) =$ $x^2 \cdot x + x^2 \cdot 3 + (-5x) \cdot x + (-5x) \cdot 3 + (-27) \cdot x + (-27) \cdot 3 =$ $x^3 + 3x^2 + (-5x^2) + (-15x) + (-27x) + (-81) =$ $x^3 - 2x^2 - 42x - 81$ $(x+2) \cdot (x-3) \cdot (x-5) =$ $(x^2 - x - 6) \cdot (x-5) =$ $x^3 - 6x^2 - x + 30$

Interaktive Inhalte:

hier klicken

1.2.3 Binomische Formel

1. Binomische Formel

$$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

$$(a+b)^2 = (a+b)(a+b) = a^2 + a \cdot b + a \cdot b + b^2$$

$$(-a-b)^2 = (-1)^2(a+b)^2 = (a+b)^2$$

$$(x+5)^2 = x^2 + 10 \cdot x + 25$$

$$(x+9)^2 = x^2 + 18 \cdot x + 81$$

$$(-x-9)^2 = x^2 + 18 \cdot x + 81$$

$$(2 \cdot x + 5)^2 = 4 \cdot x^2 + 20 \cdot x + 25$$

$$(6 \cdot x + 5)^2 = 36 \cdot x^2 + 60 \cdot x + 25$$

$$(x+y)^2 = x^2 + 2 \cdot x \cdot y + y^2$$

$$(x \cdot z + y)^2 = x^2 \cdot z^2 + 2 \cdot x \cdot z \cdot y + y^2$$

2. Binomische Formel

$$(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$

$$(a-b)^2 = (a-b)(a-b) = a^2 - a \cdot b - a \cdot b + b^2$$

$$(-a+b)^2 = (-1)^2(a-b)^2 = (a-b)^2$$

$$(x-5)^2 = x^2 - 10 \cdot x + 25$$

$$(x-9)^2 = x^2 - 18 \cdot x + 81$$

$$(-x+9)^2 = x^2 - 18 \cdot x + 81$$

$$(2 \cdot x - 5)^2 = 4 \cdot x^2 - 20 \cdot x + 25$$

$$(6 \cdot x - 5)^2 = 36 \cdot x^2 - 60 \cdot x + 25$$

$$(x-y)^2 = x^2 - 2 \cdot x \cdot y + y^2$$

$$(x \cdot z - y)^2 = x^2 \cdot z^2 - 2 \cdot x \cdot z \cdot y + y^2$$

3. Binomische Formel

$$(a+b) \cdot (a-b) = a^2 - b^2$$

 $(a+b) \cdot (a-b) = a^2 - a \cdot b + a \cdot b - b^2 = a^2 - b^2$

$$(x+5) \cdot (x-5) = x^2 - 25$$

$$(x+9) \cdot (x-9) = x^2 - 81$$

$$(3 \cdot x + 5) \cdot (3 \cdot x - 5) = 9 \cdot x^2 - 25$$

$$(7 \cdot x + 9) \cdot (7 \cdot x - 9) = 49 \cdot x^2 - 81$$

$$(x+y) \cdot (x-y) = x^2 - y^2$$

Binomische Formel in der 3. Potenz

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(1x+2)^3 = 1^3x^3 + 3 \cdot 1^2 \cdot x^2 \cdot 2 + 3 \cdot 1 \cdot x \cdot 2^2 + 2^3$$

$$(x+2)^3 = x^3 + 6x^2 + 12x + 8$$

$$(2x+(-3))^3 =$$

$$2^3x^3 + 3 \cdot 2^2 \cdot x^2 \cdot (-3) + 3 \cdot 2 \cdot x \cdot (-3)^2 + (-3)^3$$

$$(2x-3)^3 = 8x^3 - 36x^2 + 54x - 27$$

Binomische Formel in der 4. Potenz

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

$$(1x+2)^4 = 1^4x^4 + 4 \cdot 1^3 \cdot x^3 \cdot 2 + 6 \cdot 1^2 \cdot x^2 \cdot 2^2 + 4 \cdot 1 \cdot x \cdot 2^3 + 2^4$$

$$(x+2)^3 = x^4 + 8x^3 + 24x^2 + 32x + 16$$

$$(-2x+(-3))^4 = (-2)^4x^4 + 4 \cdot (-2)^3 \cdot x^3 \cdot (-3) + 6 \cdot (-2)^2 \cdot x^2 \cdot (-3)^2 + 4 \cdot (-2) \cdot x \cdot (-3)^3 + (-3)^4$$

$$(-2x-3)^3 = 16x^4 + 96x^3 + 216x^2 + 216x + 81$$

Binomische Formel mit höheren Potenzen

$$(a+b)^n=k_oa^nb^0+k_1a^{n-1}b^1+k_2a^{n-2}b^2+\ldots+k_na^0b^n$$

Die Summe der Exponenten ist n.
 $n+0=n$ $n-1+1=n$ $n-2+2=n$...
Koeffizienten $(k_0,k_1..)$ übers Pascal'sche Dreieck $(a+b)^0$

oder über den binomischen Satz:

$$(a+b)^n =$$

$$\binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \ldots + \binom{n}{n}a^{0}b^{n}$$

Binomialkoeffizient
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 n über k

$$(a+b)^{1} = \begin{pmatrix} 1\\0 \end{pmatrix} a^{1} + \begin{pmatrix} 1\\1 \end{pmatrix} b^{1} = 1a+1b$$

$$(a+b)^{2} = \begin{pmatrix} 2\\0 \end{pmatrix} a^{2} + \begin{pmatrix} 2\\1 \end{pmatrix} a^{2-1}b^{1} + \begin{pmatrix} 2\\2 \end{pmatrix} a^{2-2}b^{2}$$

$$n = 2 \quad k_{0} = 1 \quad k_{1} = 2 \quad k_{2} = 1$$

$$(a+b)^{2} = 1a^{2} + 2ab + 1b^{2}$$

$$n = 3 \quad k_{0} = 1 \quad k_{1} = 3 \quad k_{2} = 3 \quad k_{2} = 1$$

$$(a+b)^{3} = 1a^{3} + 3a^{2}b + 3ab^{2} + 1b^{3}$$

$$n = 4 \quad k_{0} = 1 \quad k_{1} = 4 \quad k_{2} = 6 \quad k_{3} = 4 \quad k_{4} = 1$$

$$(a+b)^{4} = 1a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + 1b^{4}$$

Interaktive Inhalte:

$$(a+b)^2$$
 $(a-b)^2$ $(a+b)\cdot (a-b)$

1.2.4 Faktorisieren - Ausklammern

Eine Summe(Differenz) in ein Produkt umwandeln.

• Ausklammern eines Faktors

$$ac + bc = c \cdot (a + b)$$

• Doppeltes Ausklammern

$$ac + ad + bc + bd = a \cdot (c+d) + b(c+d) =$$

$$(a+b)\cdot(c+d)$$

$$a^{2} + 2 \cdot a \cdot b + b^{2} = (a+b)^{2}$$

$$a^{2} - 2 \cdot a \cdot b + b^{2} = (a-b)^{2}$$

$$a^{2} - b^{2} = (a+b) \cdot (a-b)$$

 $2x^{2} + 6x = 2x(x+3)$ Binomische Formeln $x^{2} + 10x + 25 = (x+5)^{2}$ $x^{2} - 18x + 81 = (x-9)^{2}$ $4x^{2} + 20x + 25 = (2x+5)^{2}$ $36 \cdot x^{2} - 60x + 25 = (6x-5)^{2}$ $x^{2} - 25 = (x+5)(x-5)$

 $(ax+b)^3$

 $(ax + b)^4$

Algebra Terme

1.2.5Quadratische Ergänzung

Maximalen oder minimalen Termwert bestimmen.

$$T(x) = ax^2 + bx + c$$

$$T(x) = a(x^2 + \frac{b}{a}x) + c$$

$$T(x) = a(x^2 + \frac{b}{a}x + (\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$$

$$T(x) = a[(x + \frac{b}{2a})^2 - (\frac{b}{2a})^2] + c$$

$$T(x) = a(x + \frac{b}{2a})^2 - a \cdot \frac{b^2}{4a^2} + c$$

$$T(x) = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a} + c$$

oder

$$T(x) = ax^2 + bx + c$$

$$T(x) = a(x^2 + \frac{b}{a}x + \frac{c}{a})$$

$$T(x) = a(x^2 + \frac{b}{a}x + (\frac{b}{2a})^2 - (\frac{b}{2a})^2 + \frac{c}{a})$$

$$T(x) = a[(x + \frac{b}{2a})^2 - (\frac{b}{2a})^2 + \frac{c}{a}]$$

$$T(x) = a(x + \frac{b}{2a})^2 - a \cdot \frac{b^2}{4a^2} + a \cdot \frac{c}{a}$$
$$T(x) = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a} + c$$

$$T(x) = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a} + c$$

a < 0

Maximaler Termwert = $-\frac{b^2}{4 \cdot a} + c$ für x= $-\frac{b}{2 \cdot a}$

Minimaler Termwert = $-\frac{b^2}{4 \cdot a} + c$ für x= - $\frac{b}{2 \cdot a}$

$$y = x^2 - 6x + 2$$

$$y = x^2 - 6x + 3^2 - 3^2 + 2$$

$$y = (x-3)^2 - 3^2 + 2$$

$$y = (x-3)^2 - 9 + 2$$

$$y = (x-3)^2 - 7$$

Minimaler Termwert = -7 für x = 3

$$y = 2x^2 + 8x + 2$$

$$y = 2(x^2 + 4x + 1)$$

$$y = 2(x^2 + 4x + 2^2 - 2^2 + 1)$$

$$y = 2[(x+2)^2 - 2^2 + 1]$$

$$y = 2[(x+2)^2 - 4 + 1]$$

$$y = 2[(x+2)^2 - 3]$$

$$y = 2(x+2)^2 - 6$$

Minimaler Termwert = -6 für x = -2

$$y = -4x^2 + 8x + 4$$

$$y = -4x^{2} + 8x + 4$$
$$y = -4(x^{2} - 2x) + 4$$

$$y = -4(x^2 - 2x + 1^2 - 1^2) + 4$$

$$y = -4[(x-1)^{2} - 1^{2}] + 4$$

$$y = -4[(x-1)^{2} - 1] + 4$$

$$y = -4[(x-1)^2 - 1] + 4$$

$$y = -4(x-1)^2 + 4 + 4$$

$$y = -4(x-1)^2 + 8$$

 $Maximaler Termwert = 8 f \ddot{u} r x = 1$

1.2.6 Bruchterme

Definition und Definitionsbereich

Bej einem Bruchterm ist im Nenner eine Variable. Z(x)

 $\overline{N(x)}$

Die Nullstellen des Nenners müssen aus dem Definitionsbereich ausgeschlossen werden.

Nullstellen des Nenners bestimmen: N(x) = 0

Nullstellen aus dem Definitionsbereich ausschließen:

$$\mathbb{D} = \mathbb{R} \setminus \{x_1, x_2\}$$

 $\mathbb{D} = \mathbb{R} \setminus \{0\}$ $\mathbb{D} = \mathbb{R} \setminus \{3\}$ $\overline{x-3}$

 $\mathbb{D} = \mathbb{R} \setminus \{0; 3\}$ $x^2 - 9 = 0 \qquad \mathbb{D} = \mathbb{R} \setminus \{-3; 3\}$

Erweitern von Bruchtermen

Zähler und Nenner mit dem gleichen Term multiplizieren.

$$\frac{a(x)}{b(x)} = \frac{a(x) \cdot c(x)}{b(x) \cdot c(x)}$$

$$\frac{x+3}{x-4} = \frac{(x+3)\cdot 2x}{(x-4)\cdot 2x} = \frac{2x^2+6x}{2x^2-8x}$$

Kürzen von Bruchtermen

Zähler und Nenner faktorisieren - gleiche Faktoren kürzen.

$$\frac{a(x)}{b(x)} = \frac{a(x) : c(x)}{b(x) : c(x)}$$

$$\frac{12x^2+4}{4x^2-2x} = \frac{4x(3x+1)}{2x(2x-1)} = \frac{2(3x+1)}{2x-1}$$

Addition und Subtraktion gleichnamiger Bruchterme

Zähler addieren bzw. subtrahieren.
$$\frac{a(x)}{c(x)} + \frac{b(x)}{c(x)} = \frac{a(x) + b(x)}{c(x)}$$

$$\frac{d(x)}{c(x)} + \frac{d(x)}{c(x)} = \frac{d(x) + d(x)}{c(x)}$$

$$\frac{a(x)}{c(x)} - \frac{b(x)}{c(x)} = \frac{a(x) - b(x)}{c(x)}$$

$$\frac{2}{3x} + \frac{4}{3x} = \frac{2+4}{3x} = \frac{6}{3x} = \frac{2}{x}$$
$$\frac{5x}{7x-2} - \frac{3}{7x-2} = \frac{5x-3}{7x-2}$$

Addition und Subtraktion ungleichnamiger Bruchterme

$$\frac{a(x)}{b(x)} + \frac{c(x)}{d(x)} = \frac{a(x) \cdot d(x)}{b(x) \cdot d(x)} + \frac{c(x) \cdot b(x)}{b(x) \cdot d(x)} = \frac{a(x) \cdot d(x) + c(x) \cdot b(x)}{b(x) \cdot d(x)} = \frac{a(x) \cdot d(x)}{b(x)} - \frac{c(x) \cdot b(x)}{b(x) \cdot d(x)} = \frac{a(x) - b(x)}{b(x) \cdot d(x)}$$

$$\frac{2}{5x} + \frac{3}{x+4} = \frac{2 \cdot (x+4)}{5x(x+4)} + \frac{3 \cdot 5x}{5x(x+4)} = \frac{2 \cdot (x+4) + 3 \cdot 5x}{5x(x+4)}$$
$$= \frac{2x+8+15x}{5x(x+4)} = \frac{17x+8}{5x(x+4)}$$

Terme

Multiplikation von Bruchtermen

Zähler mal Zähler und Nenner mal Nenner.
$$\frac{a(x)}{a(x)} \cdot \frac{c(x)}{a(x)} = \frac{a(x) \cdot c(x)}{a(x)}$$

$$\frac{d(x)}{b(x)} \cdot \frac{c(x)}{d(x)} = \frac{d(x) \cdot c(x)}{b(x) \cdot d(x)}$$

$$\frac{3x}{x+4} \cdot \frac{5}{6x} = \frac{3x \cdot 5}{(x+4) \cdot 6x} = \frac{15x}{6x \cdot (x+4)}$$

Division von Bruchtermen

Mit dem Kehrwert des Bruchterms multiplizieren.

$$\frac{a(x)}{b(x)} : \frac{c(x)}{d(x)} = \frac{a(x)}{b(x)} \cdot \frac{d(x)}{c(x)} = \frac{a(x) \cdot d(x)}{b(x) \cdot c(x)}$$

Bruch durch Term

a(x)

$$\frac{\overline{b(x)}}{e(x)} = \frac{a(x)}{b(x)} : e(x) = \frac{a(x)}{b(x)} \cdot \frac{1}{e(x)} = \frac{a(x)}{b(x) \cdot e(x)}$$

Term durch Bruchterm:
$$\frac{e(x)}{\frac{c(x)}{d(x)}} = e(x) : \frac{c(x)}{d(x)} = \frac{e(x)}{1} \cdot \frac{d(x)}{c(x)} = \frac{e(x) \cdot d(x)}{c(x)}$$

Doppelbruch:

$$\frac{\frac{a(x)}{b(x)}}{\frac{c(x)}{d(x)}} = \frac{a(x)}{b(x)} : \frac{c(x)}{d(x)} = \frac{a(x)}{b(x)} \cdot \frac{d(x)}{c(x)} = \frac{a(x) \cdot d(x)}{b(x) \cdot c(x)}$$

$$\frac{3}{4x} : \frac{5}{6x} = \frac{3}{4x} \cdot \frac{6x}{5} = \frac{3 \cdot 6x}{4x \cdot 5} = \frac{18x}{20x} = \frac{9}{10}$$

$$4x : \frac{5}{6x} = 4x \cdot \frac{6x}{5} = \frac{4x \cdot 6x}{5} = \frac{24x^2}{5}$$

$$\frac{3}{4x} : 5x = \frac{3}{4x} \cdot \frac{1}{5x} = \frac{3}{4x \cdot 5x} = \frac{3}{20x^2}$$

$$\frac{3}{4x} = \frac{3}{4x} : \frac{5}{6x} = \frac{3}{4x} \cdot \frac{6x}{5} = \frac{3 \cdot 6x}{4x \cdot 5} = \frac{18x}{20x} = \frac{9}{10}$$

Algebra

1.2.7 Polynomdivision

Die Polynomdivision funktioniert ähnlinch wie die schriftliche Division.

- Voraussetzung: Zählergrad ≧ Nennergrad
- höchste Potenz des Zählers durch die höchste Potenz des Nenners teilen
- Nenner mit dem Ergebnis multiplizieren und abziehen
- \bullet höchste Potenz des Restpolynom durch die höchste Potenz des Nenners teilen

usw.

• Wiederholen bis Zählergrad < Nennergrad

$$\frac{3x^3 - 10x^2 + 7x - 12}{x - 3}$$

$$\frac{3x^3}{x} = 3x^2$$
 $(3x^3 - 10x^2 + 7x - 12) : (x - 3) = 3x^2$

• Nenner mit dem Ergebnis multiplizieren und abziehen $(x-3)3x^2=3x^3-9x^2$

• höchste Potenz des Restpolynom

durch die höchste Potenz des Nenners teilen

$$\frac{-x^{2}}{x} = -x$$

$$usw...$$

$$(3x^{3} - 10x^{2} + 7x - 12) : (x - 3) = 3x^{2} - x + 4$$

$$-(3x^{3} - 9x^{2})$$

$$-x^{2} + 7x - 12$$

$$-(-x^{2} + 3x)$$

$$4x - 12$$

$$-(4x - 12)$$

ulletPolynomdivision mit Rest

•Polynomdivision mit fehlenden Potenzen beim Zähler

Interaktive Inhalte:

1.3 Gleichungen

1.3.1 Grundlagen

Definition

Termwert der linken Seite $T_1(x)$ ist gleich dem Termwert der rechten Seite $T_2(x)$.

$$T_1(x) = T_2(x)$$

$$T_1(x) = 2 \cdot (x+3)$$
 $T_2(x) = 5x$
 $T_1(x) = T_2(x)$
 $2 \cdot (x+3) = 5x$
 $2x+6=5x$
 $x=2$

Grundmenge $\mathbb G$ - Definitionsmenge $\mathbb D$ - Lösungsmenge $\mathbb L$

- \bullet Die Grundmenge $\mathbb G$ ist die Zahlenmenge, die man für die Variable einsetzen möchte.
- ullet Die Definitionsmenge $\mathbb D$ ist die Zahlenmenge, die man für die Variable einsetzen kann. Aus der Grundmenge werden jene Elemente ausgeschlossen, für die die Gleichung nicht definiert ist.

Bei Gleichungen mit

- Brüchen, muss der Nenner ungleich Null sein.
- Wurzeln, muss der Radikand größer gleich Null sein.
- Logarithmen, muss der Numerus größer als Null sein.
- ullet Die Lösungsmenge $\mathbb L$ sind die Zahlen, die beim Einsetzen in die Gleichung eine wahre Aussage ergeben und in der Definitionsmenge enthalten sind.
- Gibt es keine Lösung der Gleichung oder ist die Lösung nicht in der Definitionsmenge enthalten, so ist die Lösungsmenge die leere Menge $\mathbb{L} = \{\}.$

$$-5 \cdot x - 4 = 6 \qquad x = -2$$

$$-5 \cdot (-2) - 4 = 6$$

$$6 = 6 \text{ wahre Aussage}$$

$$\mathbb{G} = \mathbb{N} \qquad \mathbb{D} = \mathbb{N} \qquad -2 \notin \mathbb{D} \qquad \mathbb{L} = \{\}$$

$$\mathbb{G} = \mathbb{Q} \qquad \mathbb{D} = \mathbb{Q} \qquad -2 \in \mathbb{D} \qquad \mathbb{L} = \{-2\}$$

$$\mathbb{G} = \mathbb{R} \qquad \mathbb{D} = \mathbb{R} \qquad -2 \in \mathbb{D} \qquad \mathbb{L} = \{-2\}$$

$$\frac{2}{x+4} = \frac{3}{x-1} \qquad x = -14$$

$$\frac{2}{-14+4} = \frac{3}{-14-1}$$

$$\frac{1}{-5} = \frac{1}{-5} \qquad \text{wahre Aussage}$$

Die Nullstellen des Nenners müssen aus dem Definitionsbereich ausgeschlossen werden.

$$\begin{array}{lll} x-1=0 & x=1 \\ x+4=0 & x=-4 \\ \mathbb{G}=\mathbb{R} & \mathbb{D}=\mathbb{R}\setminus\{-4;1\} & -14\in\mathbb{D} & \mathbb{L}=\{-14\} \end{array}$$

$$\begin{array}{ll} \sqrt{x-7}=4 & x=23\\ \sqrt{23-7}=4\\ 4=4 & \text{wahre Aussage} \end{array}$$

Der Radikand muss größer gleich Null sein.

$$\begin{array}{ll} x-7\geq 0 & x\geq 7 \\ \mathbb{G}=\mathbb{R} & \mathbb{D}=[7;\infty[& 23\in \mathbb{D} & \mathbb{L}=\{23\} \end{array}$$

$$\begin{split} \log_2\left(-x+2\right) &= 3 \qquad x = -6 \\ log_2(-(-6)+2) &= 3 \\ 3 &= 3 \qquad \text{(wahre Aussage)} \\ \text{Der Numerus muss größer als Null sein.} \\ -x+2 &> 0 \qquad x < -2 \\ \mathbb{G} &= \mathbb{R} \qquad \mathbb{D} =]-\infty; -2[\qquad -6 \in \mathbb{D} \qquad \mathbb{L} = \{-6\} \end{split}$$

Äquivalenzumformung

Durch eine Äquivalenzumformung ändert sich die Lösungsmenge einer Gleichung nicht.

Äquivalenzumformungen von Gleichungen:

- Vertauschen der beiden Seiten
- Addition des gleichen Terms (Zahl) auf beiden Seiten
- Subtraktion des gleichen Terms auf beiden Seiten
- Multiplikation mit dem gleichen Term (ungleich Null) auf beiden Seiten
- Division mit dem gleichen Term (ungleich Null) auf beiden Seiten

Quadrieren (Potenzieren mit einem geraden Exponenten) ist keine Äquivalenzumformung. Der berechnete Wert, muss durch das Einsetzen in die Ursprungsgleichung überprüft werden.

Vertauschen der beiden Seiten

$$x - 2 = 8$$
 $8 = x - 2$

Addition des gleichen Terms auf beiden Seiten

$$x - 2 = 8$$
 / + 2

$$x - 2 + 2 = 8 + 2$$

$$x = 10$$

Subtraktion des gleichen Terms auf beiden Seiten

$$3x - 2 = 2x + 3$$
 $/ - 2x$

$$3x - 2x - 2 = 2x - 2x + 3$$

$$x - 2 = 3$$

Multiplikation mit dem gleichen Term auf beiden Seiten

$$\frac{2}{x-3} = 5 \qquad / \cdot (x-3)$$

$$\frac{x-3}{2 \cdot (x-3)} = 5 \cdot (x-3)$$

$$2 = 5(x - 3)$$

Division durch den gleichen Term auf beiden Seiten

$$4x = 8$$
 / :

$$\frac{4x}{4} = \frac{8}{4}$$

$$x = 2$$

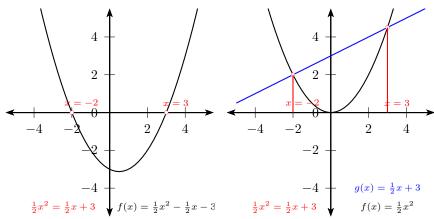
Quadrieren

$$\sqrt{x} = -4$$

$$\sqrt{x^2} = (-4)^2$$

$$\mathbb{D} = \mathbb{R}_0^+ \mid \sqrt{x} = 4$$

$$\sqrt{x^2} = 4^2$$


$$\mathbb{D} = \mathbb{R}_0^+$$

$$x = 16 \qquad \qquad x = 16$$

$$\sqrt{x} = -4$$
 $\sqrt{x} = 4$

$$\sqrt{16} \neq -4 \qquad \qquad \sqrt{16} = 4
\mathbb{L} = \{\} \qquad \qquad \mathbb{L} = \{16\}$$

1.3.2 Methoden

Graphische Methoden

• Schnittpunkt der Funktion mit der x-Achse:

- Gleichung nach Null auflösen

- Gleichung als Funktion schreiben

- Graph der Funktion zeichnen

- Lösung der Gleichung: Schnittpunkte mit der x-Achse (Nullstellen) ablesen

• Schnittpunkt zwischen 2 Funktionen:

- linken und rechten Term als Funktionen schreiben

- Graphen der Funktionen zeichnen

- Lösung der Gleichung: x-Wert der Schnittpunkte der Graphen ablesen

Gleichung: $\frac{1}{2}x^2 = \frac{1}{2}x + 3$ Gleichung nach Null auflösen

 $\frac{1}{2}x^2 - \frac{1}{2}x - 3 = 0$

Gleichung als Funktion schreiben

 $f(x) = \frac{1}{2}x^2 - \frac{1}{2}x - 3$

Graphen der Funktionen zeichnen

Lösung der Gleichung: Schnittpunkte mit der x-Achse

 $x_1 = 3 \qquad x_2 = -2$

Gleichung: $\frac{1}{2}x^2 = \frac{1}{2}x + 3$

linken und rechten Term als Funktionen schreiben:

 $f(x) = \frac{1}{2}x^2$ $g(x) = \frac{1}{2}x + 3$

Graphen der Funktionen zeichnen

Lösung der Gleichung: Schnittpunkte der Funktionen

 $x_1 = 3$ $x_2 = -2$

Numerische Methoden

- Gleichung nach Null auflösen

- Gleichung als Funktionsterm f(x) schreiben

- Nullstellen von f(x) berechnen

• Newtonverfahren

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- Funktion ableiten: f'(x)

- Startwert x_0 wählen

- Funktionswerte $f(x_0)$ und $f'(x_0)$ berechnen

- Werte einsetzen und 1. Näherung x_1 berechnen:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

 $-x_1$ einsetzen und 2. Näherung berechnen:

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

• Intervallhalbierung

-unterschiedliche Vorzeichen von f(a) und f(b)

- Nullstelle liegt im Intervall [a; b]

- Mitte zwischen a und b ermitteln:

$$m_1 = \frac{a+b}{2}$$

- sind die Vorzeichen von $f(m_1)$ und f(a) gleich, wird $a=m_1$

- sind die Vorzeichen von $f(m_1)$ und f(b) gleich, wird $b=m_1$

- Mitte zwischen a und b ermitteln:

$$m_2 = \frac{a+b}{2}$$

- sind die Vorzeichen von $f(m_2)$ und f(a) gleich, wird $a=m_2$

- sind die Vorzeichen von $f(m_2)$ und f(b) gleich, wird $b=m_2$ usw.

Newtonverfahren $\frac{1}{2}x^2 = \frac{1}{2}x + 3$ Funktion $f(x) = \frac{1}{2}x^2 - \frac{1}{2}x - 3$ Funktion ableiten: $f'(x) = x - \frac{1}{2}$ $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Startwert: $x_0 = 4$ f(4) = 3 $f'(4) = 3\frac{1}{2}$ $x_1 = 4 - \frac{f(4)}{f'(4)}$ $x_1 = 4 - \frac{3}{3\frac{1}{2}}$ $x_1 = 3\frac{1}{7}$ $f(3\frac{1}{7}) = \frac{18}{49}$ $f'(3\frac{1}{7}) = \frac{18}{9}$ $f'(3\frac{1}{7}) = \frac{18}{9}$ $x_2 = 3\frac{1}{7} - \frac{f(3\frac{1}{7})}{f'(3\frac{1}{7})}$ $x_2 = 3\frac{1}{7} - \frac{\frac{189}{49}}{2\frac{9}{14}}$ $x_2 = 3$ f(3) = 0,00966 f'(3) = 2,5 $x_3 = 3 - \frac{f(3)}{f'(3)}$ $x_3 = 3 - \frac{0,00966}{2.5}$

 $x_3 = 3$

Intervallhalbierung $\frac{1}{2}x^2 = \frac{1}{2}x + 3$ Funktion $f(x) = \frac{1}{2}x^2 - \frac{1}{2}x - 3$ Nullstelle im Intervall[1; 4] $a = 1 \quad b = 4$ $f(1) = -3 \quad f(4) = 1$ $m_1 = \frac{1+4}{2} = 2, 5$ f(2,5) = -2, 625 $a = m_1 = 2, 5$ Nullstelle im Intervall[2, 5; 4] $m_2 = \frac{2,5+4}{2} = 3, 25$ f(3,25) = 0, 65625 $b = m_2 = 3, 25$ Nullstelle im Intervall[2, 5; 3, 25]

Algebraische Methoden

• Lineare Gleichungen:

$$ax + b = cx + d$$

Lösung durch Auflösen nach der Variablen.

• Potenzgleichung:

$$ax^{2} + c = 0$$
 $x^{2} = \frac{-c}{a}$ $x_{1/2} = \pm \sqrt{\frac{-c}{a}}$ $ax^{3} + b = 0$ $x = \sqrt[3]{\frac{-b}{a}}$

Auflösen nach der Variablen und die Wurzel ziehen.

• Faktorisieren

Jeder Summenterm enthält die Variable mit unterschiedlichen Potenzen.

$$ax^{2} + bx = 0$$
 $x(ax + b) = 0$
 $ax^{3} + bx = 0$ $x(ax^{2} + b) = 0$
 $ax^{3} + bx^{2} = 0$ $x^{2}(ax + b) = 0$

Lösung der Gleichung durch Auflösen nach Null und faktorisieren des Terms. Ein Produkt ist dann Null, wenn einer der Faktoren Null ist.

• Quadratische Gleichung:

$$ax^2 + bx + c = 0$$

Lösung mit Lösungsformel für quadratischen Gleichungen $x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$

 $x_{1/2} \equiv \frac{}{2 \cdot a}$ • Kubische Gleichung mit Konstante:

$$ax^3 + bx^2 + d = 0$$
$$ax^3 + cx + d = 0$$
$$ax^3 + bx^2 + cx + d = 0$$

Lösung durch Polynomdivision.

• Biquadratische Gleichung: $ax^4 + bx^2 + c = 0$

Lösung durch Substitution.

• Terme und deren Umkehrung:

Lösung durch Auflösen nach dem Term und Anwendung von deren Umkehrung.

Lineare Gleichung 2x + 4 = 6x + 7 / -6x -4x + 4 = 7 / -4 -4x = 3 / : (-4) $x = -\frac{3}{2}$

Potenzgleichung: $x^2 - 16 = 0$ / + 16 $x^2 = 16$ $x = \pm \sqrt{16}$ $x_1 = 4$ $x_2 = -4$

Faktorisieren:

$$x^3 - 16x = 0$$
$$x(x^2 - 16) = 0$$

Ein Produkt ist dann Null, wenn einer der Faktoren Null ist. $x_1=0 \quad \lor \quad x^2-16=0$

$$x^2 - 16 = 0$$

$$x_2 = 4 \qquad x_3 = -4$$

Quadratische Gleichung:

$$\frac{1}{2}x^2 = \frac{1}{2}x + 3$$
Gleichung nac

Gleichung nach Null auflösen:

$$\frac{1}{2}x^{2} - \frac{1}{2}x - 3 = 0$$

$$x_{1/2} = \frac{+\frac{1}{2} \pm \sqrt{\left(-\frac{1}{2}\right)^{2} - 4 \cdot \frac{1}{2} \cdot (-3)}}{2 \cdot \frac{1}{2}}$$

$$x_{1} = 3 \qquad x_{2} = -2$$

Umkehrung:

$$2^x = 8$$
 $x = \log_2(8)$ $x = 3$

$$\log_2(x) = 3$$
 $x = 2^3$ $x = 8$

$$e^{(3x+4)} = 3$$
 / ln
 $3x + 4 = \ln(3)$ / - 4 / : 3
 $x = -0,967$

x = -2

1.3.3 Lineare Gleichung

- Klammern auflösen
- Terme zusammenfassen
- Äquivalenzumformung: Alle Terme mit der Variablen auf die eine Seite und alle Terme ohne Variable auf die andere Seite
- durch die Zahl vor der Variablen dividieren

```
\begin{aligned} &2\frac{1}{2}x+5=4(x-2)-2x+12\\ &\text{Klammern auflösen:}\\ &2\frac{1}{2}x+5=4x-8-2x+12\\ &\text{Terme zusammenfassen:}\\ &2\frac{1}{2}x+5=2x+4\\ &\ddot{\text{Aquivalenzumformung:}}\\ &2\frac{1}{2}x+5=2x+4 & /-5 & /-2x\\ &2\frac{1}{2}x-2x=4-5\\ &\text{durch die Zahl vor der Variablen dividieren:}\\ &\frac{1}{2}x=-1 & /:\frac{1}{2}\\ &x=\frac{-1}{\frac{1}{2}} \end{aligned}
```

$\mathbf{a} \cdot \mathbf{x} = \mathbf{b}$

$$a \cdot x = b \qquad / : a$$
$$x = \frac{b}{a}$$

$$x + a = b$$

$$x + a = b \qquad / - a$$
$$x = b - a$$

$$x+2=5$$
 $/-2$ $x+5=-7$ $/-5$ $x=5-2$ $x=-7-5$ $x=3$

$$\mathbf{a} \cdot \mathbf{x} + \mathbf{b} = \mathbf{c}$$

$$a \cdot x + b = c /-b$$

$$a \cdot x = c - b /: a$$

$$x = \frac{c - b}{a}$$

$$\begin{array}{lll} 5 \cdot x - 4 = 6 & / + 4 & -2 \cdot x + 4 = -6 & / - 4 \\ 5 \cdot x = 10 & / : 5 & -2 \cdot x = -10 & / : (-2) \\ x = \frac{10}{5} & x = \frac{-10}{-2} \\ x = 2 & x = 5 \end{array}$$

$$\frac{\mathbf{x}}{\mathbf{a}} = \mathbf{b}$$

$$\frac{x}{a} = b \qquad / \cdot a$$
$$x = b \cdot a$$

$$\begin{aligned} \frac{x}{2} &= 5 \qquad / \cdot 2 \\ x &= 5 \cdot 2 \\ x &= 10 \end{aligned}$$
$$\frac{x}{5} &= -7 \qquad / \cdot 5 \\ x &= -7 \cdot 5 \\ x &= -35 \end{aligned}$$

$$\mathbf{a} - \mathbf{x} = \mathbf{b}$$

$$a - x = b /-a$$

$$-x = b - a /: (-1)$$

$$x = a - b$$

$$2-x=5 /-2 x-5=-7 /+5$$

 $-x=5-2 x=-7+5$
 $-x=3/:(-1) x=-2$
 $x=-3$

$\mathbf{x} - \mathbf{a} = \mathbf{b}$

$$x-a=b /+a$$
 $x=b+a$ $x=x=0$ $x=x=0$

ax + b = cx + d

Interaktive Inhalte:

$a \cdot x + b = c$ $a \cdot x + b = c \cdot x + d$ $a \cdot x + d$	$b=0 a \cdot x = d $
---	------------------------------

1.3.4 Quadratische Gleichung

Umformen: $ax^2 + c = 0$

$$ax^{2} + c = 0 \quad / - c$$

$$ax^{2} = -c \quad / : a$$

$$x_{1/2} = \pm \sqrt{\frac{-c}{a}}$$
Diskriminante:
$$D = \frac{-c}{a}$$

$$D = 0 \text{ eine Lösung}$$

$$D > 0 \text{ zwei Lösungen}$$

$$\frac{-\frac{2}{3}x^{2} + \frac{1}{6} = 0}{-\frac{1}{6}} \quad / : (-\frac{\frac{1}{9}}{3})$$

$$x^{2} = \frac{-\frac{1}{6}}{-\frac{2}{3}}$$

$$x = \pm \sqrt{\frac{1}{4}}$$

$$x_{1} = \frac{1}{2} \quad x_{2} = -\frac{1}{2}$$

Faktorisieren: $ax^2 + bx = 0$

D < 0 keine Lösung

$$ax^{2} + bx = 0$$

$$x(ax + b) = 0$$

$$x_{1} = 0 \qquad \forall \qquad x_{2} = \frac{-b}{a}$$

$$x_{1} = 0 \qquad \forall \qquad x_{2} = \frac{-b}{a}$$

$$x_{2} = -4$$

$$x_{3} = 0 \qquad x_{2} = 0 \qquad x(x - 1) = 0$$

$$x_{1} = 0 \qquad x_{1} = 0$$

$$-2x - 8 = 0 \qquad / + 8$$

$$-2x = 8 \qquad / : (-2) \qquad x - 1 = 0 \qquad / + 1$$

$$x = \frac{8}{-2} \qquad x_{2} = 1$$

43

Lösungsformel (Mitternachtsformel): $ax^2 + bx + c = 0$

$$ax^{2} + bx + c = 0$$

$$x_{1/2} = \frac{-b \pm \sqrt{b^{2} - 4 \cdot a \cdot c}}{2 \cdot a}$$

Diskriminante:

$$D = b^2 - 4 \cdot a \cdot c$$

D=0 eine Lösung

D>0 zwei Lösungen

D < 0 keine Lösung

$$x^{2} + 3x - 10 = 0$$

$$x_{1/2} = \frac{-3 \pm \sqrt{3^{2} - 4 \cdot 1 \cdot (-10)}}{2 \cdot 1}$$

$$x_{1/2} = \frac{-3 \pm \sqrt{49}}{2}$$

$$x_{1/2} = \frac{-3 \pm 7}{2}$$

$$x_{1} = \frac{-3 + 7}{2}$$

$$x_{2} = -5$$

p-q Formel: $x^2 + px + q = 0$

$$x^{2} + px + q = 0$$

 $x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$

Diskriminante:

$$D = \left(\frac{p}{2}\right)^2 - q$$

D=0eine Lösung

D>0 zwei Lösungen

D < 0 keine Lösung

$$x^{2} + 3x - 10 = 0$$

$$x_{1/2} = -\frac{3}{2} \pm \sqrt{\left(\frac{3}{2}\right)^{2} - (-10)}$$

$$x_{1/2} = -1\frac{1}{2} \pm \sqrt{12\frac{1}{4}}$$

$$x_{1/2} = -1\frac{1}{2} \pm 3\frac{1}{2}$$

$$x_{1} = 2$$

$$x_{2} = -5$$

Satz von Vieta: $x^2 + px + q = 0$

$$x^{2} + px + q = 0$$

 x_{1}, x_{2} sind die Lösungen der Gleichung
 $(x - x_{1}) \cdot (x - x_{2}) = 0$
 $x^{2} - x_{2} \cdot x - x_{1} \cdot x + x_{1} \cdot x_{2} = 0$
 $x^{2} - (x_{1} + x_{2})x + x_{1} \cdot x_{2} = 0$
 $x_{1} + x_{2} = -p$
 $x_{1} \cdot x_{2} = q$

$$x^{2} + 3x - 10 = 0$$

$$p = 3 \quad q = -10$$

$$x_{1} + x_{2} = -3$$

$$x_{1} \cdot x_{2} = 10$$

$$2 - 5 = -3$$

$$2 \cdot (-5) = -10$$

$$x_{1} = 2 \quad x_{2} = -5$$

$$(x - 2) \cdot (x + 5) = 0$$

Interaktive Inhalte:

$$ax^2 + bx + c = 0$$

1.3.5 Kubische Gleichungen

Umformen: $ax^3 + b = 0$

$$ax^{3} + b = 0$$

$$ax^{3} + b = 0 / - b$$

$$ax^{3} = -b / : a$$

$$x^{3} = \frac{-b}{a}$$

$$x = \sqrt[3]{\frac{-b}{a}}$$

$$\frac{-b}{a} > 0 x = \sqrt[3]{\frac{-b}{a}}$$

$$\frac{-b}{a} < 0 x = -\sqrt[3]{\left|\frac{-b}{a}\right|}$$

$$3x^{3} + 24 = 0$$

$$3x^{3} + 24 = 0 /- 24$$

$$3x^{3} = -24 /: 3$$

$$x^{3} = \frac{-24}{3}$$

$$x = \sqrt[3]{-8}$$

$$x = -2$$

$$-3x^{3} + 24 = 0$$

$$-3x^{3} + 24 = 0 /- 24$$

$$-3x^{3} = -24 /: (-3)$$

$$x^{3} = \frac{-24}{-3}$$

$$x = \sqrt[3]{8}$$

$$x = 2$$

Faktorisieren: $ax^3 + bx = 0$

$$ax^{3} + bx = 0$$

$$x(ax^{2} + b) = 0$$

$$x_{1} = 0 \qquad \forall \qquad (ax^{2} + b) = 0$$

$$-9x^{3} + 25x = 0$$

$$x(-9x^{2} + 25) = 0$$

$$\Rightarrow x_{1} = 0 \quad \lor \quad -9x^{2} + 25 = 0$$

$$-9x^{2} + 25 = 0 \quad / -25$$

$$-9x^{2} = -25 \quad / : (-9)$$

$$x^{2} = \frac{-25}{-9}$$

$$x = \pm \sqrt{2\frac{7}{9}}$$

$$x_{2} = 1\frac{2}{3} \qquad x_{3} = -1\frac{2}{3}$$

Faktorisieren: $ax^3 + bx^2 = 0$

$$ax^{3} + bx^{2} = 0$$

$$x^{2}(ax + b) = 0$$

$$x_{1/2} = 0 \qquad \forall \qquad (ax + b) = 0$$

$$-6\frac{3}{4}x^3 - 13\frac{1}{2}x^2 = 0$$

$$x^2(-6\frac{3}{4}x - 13\frac{1}{2}) = 0$$

$$\Rightarrow x_{1/2} = 0 \quad \lor \quad -6\frac{3}{4}x - 13\frac{1}{2} = 0$$

$$-6\frac{3}{4}x - 13\frac{1}{2} = 0 \quad / + 13\frac{1}{2}$$

$$-6\frac{3}{4}x = 13\frac{1}{2} \quad / : (-6\frac{3}{4})$$

$$x = \frac{13\frac{1}{2}}{-6\frac{3}{4}}$$

$$x_3 = -2$$

Polynomdivision

$$ax^3 + bx^2 + d = 0$$
$$ax^3 + cx + d = 0$$
$$ax^3 + bx^2 + cx + d = 0$$

 \bullet Die ganzzahligen Faktoren von d
 in die Funktion einsetzen. Wird bei einem Faktor der Funktionswert Null, hat man eine Nullstelle x_0 gefunden.

- Wenn x_0 ein Nullstelle von f(x) ist, so ist f(x) durch $(x-x_0)$ ohne Rest teilbar.
- \bullet Mit dem Linearfaktor $(x-x_0)$ wird die Polynom
division durchgeführen.

$$(ax^3 + bx^2 + cx + d) : (x - x_0) = fx^2 + dx + e$$

$$f(x) = (ax^3 + bx^2 + cx + d) = (x - x_0) \cdot (fx^2 + dx + e)$$

$$x^{3} + 3x^{2} - 4 = 0$$

$$x^{3} + 3x^{2} - 4 = 0$$

$$d = 4 \quad \text{Ganzzahlige Faktoren: } \pm 1, \pm 2, \pm 4$$

$$f(1) = 0$$
Nullstelle gefunden: $x_{1} = 1$

$$(x^{3} + 3x^{2} - 4) : (x - 1) = x^{2} + 4x + 4$$

$$-(x^{3} - x^{2})$$

$$4x^{2} - 4$$

$$-(4x^{2} - 4x)$$

$$4x - 4$$

$$-(4x - 4)$$

$$0$$

$$1x^{2} + 4x + 4 = 0$$

$$x_{2/3} = \frac{-4 \pm \sqrt{4^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1}$$

$$x_{2/3} = \frac{-4 \pm \sqrt{0}}{2}$$

$$x_{2/3} = \frac{-4 \pm 0}{2}$$

$$x_{2/3} = \frac{-4 + 0}{2}$$

$$x_{2} = \frac{-4 - 0}{2}$$

$$x_{3} = -2$$

Interaktive Inhalte:

hier klicken

1.3.6 Gleichungen höheren Grades

Gerader Exponent: $ax^n + c = 0$

$$ax^{n} + c = 0 / - c$$

$$ax^{n} = -c / : a$$

$$x_{1/2} = \pm \sqrt[n]{\frac{-c}{a}}$$

Diskriminante:

$$D = \frac{-c}{a}$$

D=0eine Lösung

D > 0 zwei Lösungen

D < 0 keine Lösung

$$-2x^{4} + 162 = 0 / - 162$$

$$-2x^{4} = -162 / : (-2)$$

$$x^{4} = \frac{-162}{-2}$$

$$x = \pm \sqrt[4]{81}$$

$$x_{1} = 3 x_{2} = -3$$

Ungerader Exponent: $ax^n + c = 0$

$$ax^{n} + b = 0$$

$$ax^{n} + b = 0 /-b$$

$$ax^{n} = -b /:a$$

$$x^{n} = \frac{-b}{a}$$

$$x = \sqrt[n]{\frac{-b}{a}}$$

$$\frac{-b}{a} > 0 x = \sqrt[n]{\frac{-b}{a}}$$

$$\frac{-b}{a} < 0 x = -\sqrt[n]{\left|\frac{-b}{a}\right|}$$

$$5x^{3} + 320 = 0 / - 320$$

$$5x^{3} = -320 / : 5$$

$$x^{3} = -\frac{320}{5}$$

$$x = -\sqrt[3]{64}$$

$$x = -4$$

Biquadratische Gleichung (Substitution)

 $ax^4 + bx^2 + c = 0$

Substitution: $u = x^2$ $u^2 = x^4$

Quadratische Gleichung: $au^2 + bu + c = 0$

Lösungen: u_1 u_2

Resubstitution: $x^2 = u_1$ $x^2 = u_2$

 $x^{4} - 10x^{2} + 9 = 0$ $u = x^{2} u^{2} = x^{4}$ $1u^{2} - 10u + 9 = 0$

 $x_3 = 1$ $x_4 = -1$

 $u_{1/2} = \frac{+10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot 9}}{2 \cdot 1}$ $u_{1/2} = \frac{+10 \pm \sqrt{64}}{2}$ $u_{1/2} = \frac{10 \pm 8}{2}$ $u_1 = \frac{10 + 8}{2} \quad u_2 = \frac{10 - 8}{2}$ $u_1 = 9 \quad u_2 = 1$ $x^2 = 9$ $x = \pm \sqrt{9}$ $x_1 = 3 \quad x_2 = -3$ $x^2 = 1$ $x = \pm \sqrt{1}$

Interaktive Inhalte:

hier klicken

1.3.7 Bruchgleichung

Überkreuzmultiplikation

- \bullet Nullstellen des Nenners aus dem Definitionsbereich ausschließen.
- •Das Produkt aus dem Zähler des linken Bruchs und dem Nenner des rechten Bruchs ist gleich dem Produkt aus dem Nenner des linken Bruchs und dem Zähler des rechten Bruchs.
- Gleichung lösen.
- \bullet Lösungen müssen im Definitionsbereich enthalten sein.

$$\frac{a}{bx+c} = \frac{d}{ex+f} \qquad a \cdot (ex+f) = d \cdot (bx+c)$$

$$\frac{2}{x+4} = \frac{3}{x-1}$$
 Definitions
bereich:
$$\mathbb{D} = \mathbb{R} \setminus \{-4;1\}$$
 Überkreuz
multiplikation:
$$2 \cdot (x-1) = 3 \cdot (x+4)$$

$$2x-2=3x+12$$

$$x=-14$$

Mit dem Hauptnenner durchmultiplizieren

- Nullstellen des Nenners aus dem Definitionsbereich ausschließen.
- Gleichung mit dem Hauptnenner durchmultiplizieren.
- Gleichung lösen.
- Lösungen müssen im Definitionsbereich enthalten sein.

```
\frac{2}{5x} = \frac{1}{x+3}
Definitionsbereich: \mathbb{D} = \mathbb{R} \setminus \{-3; 0\}
Hauptnenner:5x(x+3)
\frac{2 \cdot 5x(x+3)}{5x} = \frac{1 \cdot 5x(x+3)}{(x+3)}
2 \cdot (x+3) = 5x
2x+6 = 5x
x = 2
```

1.3.8 Exponentialgleichungen

$$\mathbf{b^x} = \mathbf{a}$$

```
\bullet b^x = a \quad a > 0
b^x = a / \log_b \dots
\log_b\left(b^x\right) = \log_b\left(a\right)
Logarithmengesetz: log_b b^x = x \log_b b = x
x = \log_b(a)
\bullet e^{x} = a \quad a > 0
Basis: e = 2,718.. (eulersche Zahl)
e^x = a \quad a > 0
e^x = a / ln ...

\ln\left(e^x\right) = \ln\left(a\right)

Logarithmengesetz: lne^x = x ln e = x
x = \ln(a)
\bullet 10^x = a \quad a > 0
Basis: 10
10^x = a \quad a > 0
10^x = a / lg ...
\lg\left(10^x\right) = \lg\left(a\right)
Logarithmengesetz: lg10^x = x \lg 10 = x
x = \lg(a)
```

$$2^{x} = 8$$

 $x = \log_{2}(8)$
 $x = 3$
 $e^{x} = 4$
 $x = \ln(4)$
 $x = 1,39$

$\mathbf{a} \cdot \mathbf{b}^{(\mathbf{c}\mathbf{x} + \mathbf{d})} + \mathbf{f} = \mathbf{0}$

$$\begin{aligned} a \cdot b^{(cx+d)} + f &= 0 \\ a \cdot b^{(cx+d)} + f &= 0 \qquad / - f \\ a \cdot b^{(cx+d)} &= -f \qquad / : a \\ b^{(cx+d)} &= \frac{-f}{a} \qquad / \log_b(\ldots) \\ &\frac{-f}{a} > 0 \Rightarrow \\ \log_b \left(b^{(cx+d)} \right) &= \log_b \left(\frac{-f}{a} \right) \\ \text{Logarithmengesetz: } \log_b b^n &= n \log_b b = n \\ (cx+d) \log_b (b) &= \log_b \left(\frac{-f}{a} \right) \\ cx+d &= \log_b \left(\frac{-f}{a} \right) \qquad / - d \qquad / : c \\ x &= \frac{\log_b \left(\frac{-f}{a} \right) - d}{c} \\ &\frac{-f}{a} \leq 0 \Rightarrow \text{ keine L\"osung} \end{aligned}$$

$$\begin{array}{lll} -2\cdot 2^{(2x+3)} + 4 = 0 \\ -2\cdot 2^{(2x+3)} + 4 = 0 & / - 4 \\ -2\cdot 2^{(2x+3)} = -4 & /: -2 \\ 2^{(2x+3)} = 2 & /\log_2 \\ 2x + 3 = \log_2\left(2\right) & / - 3 & /: 2 \\ x = -1 \\ \text{Basis: } e = 2,718.. \text{(eulersche Zahl)} \\ 2\cdot e^{(3x+4)} - 6 = 0 \\ 2\cdot e^{(3x+4)} - 6 = 0 & / + 6 \\ 2\cdot e^{(3x+4)} = +6 & /: 2 \\ e^{(3x+4)} = 3 & /\ln \\ 3x + 4 = \ln\left(3\right) & / - 4 & /: 3 \\ x = -0,967 \end{array}$$

Interaktive Inhalte:

$$b^{x} = a \qquad e^{x} = a \qquad ab^{(cx+d)} + f = 0 \qquad ae^{(cx+d)} + f = 0$$

1.3.9 Logarithmusgleichungen

 $\log_{\mathbf{b}} \mathbf{x} = \mathbf{a}$

 $\bullet \log_{\mathbf{b}} \mathbf{x} = \mathbf{a} \quad /\mathbf{b}$ $x = b^{a}$ $\bullet \lg \mathbf{x} = \mathbf{a} \quad /\mathbf{10}$ $x = 10^{a}$ $\bullet \ln \mathbf{x} = \mathbf{a} \quad /\mathbf{e}$ $x = e^{a}$

$$log_2 x = 3$$

 $x = 2^{(3)}$
 $x = 8$
 $ln(x) = 1,39$
 $x = e^{(1,39)}$
 $x = 4$

 $\mathbf{a}\log_{\mathbf{b}}(\mathbf{c}\mathbf{x}+\mathbf{d})+\mathbf{f}=\mathbf{0}$

$$\begin{split} a\log_b\left(cx+d\right)+f&=0\\ a\log_b\left(cx+d\right)+f&=0 \qquad /-f\\ a\log_b\left(cx+d\right)&=-f \qquad /:a\\ \log_b\left(cx+d\right)&=\frac{-f}{a} \qquad /b\\ b^{(\log_b\left(cx+d\right))}&=b^{\left(\frac{-f}{a}\right)}\\ cx+d&=b^{\left(\frac{-f}{a}\right)} \qquad /-d \qquad /:c\\ x&=\frac{b^{\left(\frac{-f}{a}\right)}-d}{c} \end{split}$$

Interaktive Inhalte:

 $log_b x = a ln(x) = a lag_b(cx+d) + f = 0 lag_b(cx+d) + f = 0$

1.3.10 Trigonometrische Gleichungen

Grundlagen trigonometrische Gleichungen

• Lösung der Gleichungen:

$$\sin(\alpha) = a \quad \cos(\alpha) = a \quad \tan(\alpha) = a$$

• Der Arkussinus (Arcuscosinus, Arkustangens) des Betrags von a ist die Lösung im 1. Quadranten.

Gradmaß(DEG):

$$\alpha' = \arcsin(|a|) = \sin^{-1}(|a|)$$

$$\alpha' = \arccos(|a|) = \cos^{-1}(|a|)$$

$$\alpha' = \arctan(|a|) = \tan^{-1}(|a|)$$

Bogenmaß(RAD):

$$x' = \arcsin(|a|) = \sin^{-1}(|a|)$$

$$x' = \arccos(|a|) = \cos^{-1}(|a|)$$

$$x' = \arctan(|a|) = \tan^{-1}(|a|)$$

• Je nach Vorzeichen von a die Quadranten wählen.

	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$
I. Quadrant	+	+	+
II. Quadrant	+	-	-
III. Quadrant	-	-	+
IV. Quadrant	-	+	-

• Umrechnen des Winkels in die Quadranten.

	DEG	RAD
I. Quadrant	α	X
II. Quadrant	$180^{\circ} - \alpha$	$\pi - x$
III. Quadrant	$180^{\circ} + \alpha$	$\pi + x$
IV. Quadrant	360° – α	$2\pi - x$

• Der Sinus und Kosinus sind periodisch mit der Periode $2\pi(360^{\circ})$.

$$\mathbb{D}=\mathbb{R}\quad k\in\mathbb{Z}$$

$$\mathbb{L} = \{\alpha + k \cdot 360^{\circ}\} \text{ (DEG)}$$

$$\mathbb{L} = \{x + k \cdot 2\pi\} (\text{RAD})$$

- Der Tangens ist periodisch mit der Periode $\pi(180^{\circ})$.

$$\mathbb{D}=\mathbb{R}\quad k\in\mathbb{Z}$$

$$\mathbb{L} = \{\alpha + k \cdot 180^{\circ}\}\ (DEG)$$

$$\mathbb{L} = \{x + k \cdot \pi\} (\text{RAD})$$

```
Winkel in Gadmaß:\alpha \quad k \in \mathbb{Z}
sin\alpha = -\frac{1}{2}
 -\frac{1}{2} < 0 \Rightarrow Lösung im III Quadrant und IV Quadrant
\alpha'^{2} = \sin^{-1}(|-\frac{1}{2}|) = 30^{\circ}
III Quadrant: \alpha_1 = 180^{\circ} + 30^{\circ} = 210^{\circ}
\mathbb{D} = \mathbb{R} \quad \mathbb{L} = \{210^{\circ} + k \cdot 360^{\circ}\}
IV Quadrant: \alpha_2 = 360^{\circ} - 30^{\circ} = 330^{\circ}
\mathbb{D} = \mathbb{R} \quad \mathbb{L} = \{330^{\circ} + k \cdot 360^{\circ}\}
\mathbb{D} = [0; 360^{\circ}] \quad \mathbb{L} = \{210^{\circ}; 330^{\circ}\}
Winkel in Bogenmaß:x k \in \mathbb{Z}
\sin x = -\frac{1}{2}
x = \sin^{-1}(-\frac{1}{2})
x' = \sin^{-1}(|\frac{1}{2}|) = 0,524
III Quadrant: x_1 = \pi + 0,524 = 3,67
\mathbb{D} = \mathbb{R} \quad \mathbb{L} = \{3, 67 + k \cdot 2\pi\}
IV Quadrant: x_2 = 2\pi - 0,524 = 5,76
\mathbb{D} = \mathbb{R} \quad \mathbb{L} = \{5, 76 + k \cdot 2\pi\}
```

| Sinus durch Kosinus = Tangens

```
a\sin(x) = b\cos(x)
                              /:a/:\cos(x)
\tan(x) = \frac{b}{a}
x = \arctan(\frac{b}{a})
```

```
8\sin(x) = 4\cos(x) \qquad /:8/:\cos(x)
\frac{\sin(x)}{\cos(x)} = \frac{4}{8}
\tan(x) = \frac{1}{2}
x = \arctan(\frac{1}{2})
x = 9,463(RAD)
                             \alpha = 26,56^{\circ}(DEG)
```

Interaktive Inhalte:

 $\sin \alpha = a \quad \sin x = a$

 $\cos \alpha = a$ $\cos x = a$ $\tan \alpha = a$ $\tan x = a$

Betragsgleichung 1.3.11

 $|\mathbf{a}\mathbf{x} + \mathbf{b}| = \mathbf{c}$

- Aufspalten der Beträge in einzelne Intervalle.
- Betragsstriche sind nicht nötig, wenn der Term des Betrags positiv ist. $ax + b \ge 0$ für $x \ge \frac{-b}{a}$
- Betragsstriche sind nicht nötig, wenn der Term des Betrags negativ ist und dafür zusätzlich ein Minuszeichen vor den Term geschrieben wird. ax + b < 0 für $x < \frac{-b}{a}$

$$|ax+b| = \begin{cases} (ax+b) & x \ge \frac{-b}{a} \\ -(ax+b) & x < \frac{-b}{a} \end{cases}$$
• 1. Lösung für $x \ge \frac{-b}{a}$

$$ax + b = c$$

$$ax + b = c / - b / : a$$
$$x = \frac{c - b}{a}$$

- 1. Lösung ist die Schnittmenge aus $x \geq \frac{-b}{a} \wedge x = \frac{c-b}{a}$
- 2. Lösung für $x < \frac{-b}{a}$

$$-(ax+b) = c \quad /: (-1)$$

$$ax+b=-c$$

$$ax + b = -c$$
 $/-b$ $/:a$

$$x = \frac{-c - c}{a}$$

- 2. Lösung ist die Schnittmenge aus $x > \frac{-b}{a} \land x = \frac{-c-b}{a}$
- Gesamtlösung ensteht aus der Vereinigungsmenge von 1. Lösung und 2. Lösung

$$\begin{aligned} |2x+3| &= 7 \\ |2x+3| &= \left\{ \begin{array}{ll} (2x+3) & x \geq \frac{-3}{2} \\ -(2x+3) & x < \frac{-3}{2} \end{array} \right. \\ \bullet \ 1. \ \text{L\"osung f\"ur} \ x \geq \frac{-3}{2} \end{aligned}$$

$$2x + 3 = 7$$

$$2x + 3 = 7 / -3 / : 2$$

- 1. Lösung ist die Schnittmenge aus $x \geq \frac{-3}{2} \wedge x = 2$
- 1. Lösung x=2
- 2. Lösung für $x < \frac{-3}{2}$

$$-(2x+3) = 7$$

$$2x + 3 = -7$$
 $/ - 3$ $/ : 2$

$$x = -\frac{1}{2}$$

- 2. Lösung ist die Schnittmenge aus $x < \frac{-3}{2} \land x = -5$
- 2. Lösung x = -5

Vereinigungsmenge aus 1. Lösung und 2. Lösung $x=2 \quad \lor \quad x=-5$

$$\begin{split} |2x+3| &= -7 \\ |2x+3| &= \left\{ \begin{array}{ll} (2x+3) & x \geq \frac{-3}{2} \\ -(2x+3) & x < \frac{-3}{2} \end{array} \right. \\ \bullet \text{ 1. L\"osung f\"ur } x \geq \frac{-3}{2} \end{split}$$

$$2x + 3 = -7$$

$$2x + 3 = -7 / -3 / : 2$$

$$r = -5$$

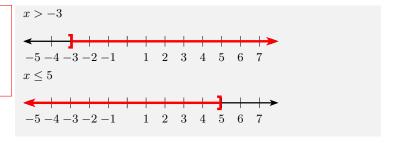
- 1. Lösung ist die Schnittmenge aus $x \ge \frac{-3}{2} \land x = -5$
- 1. Lösung ist leere Menge
- 2. Lösung für $x < \frac{-3}{2}$

$$-(2x+3) = -7$$

$$2x + 3 = +7 / -3 / : 2$$

$$c = 2$$

- 2. Lösung ist die Schnittmenge aus $x < \frac{-3}{2} \land x = 2$
- 2. Lösung ist leere Menge


Gesamtlösung ist leere Menge

1.4 Ungleichungen

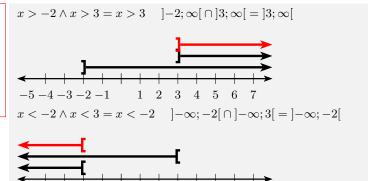
1.4.1 Grundlagen

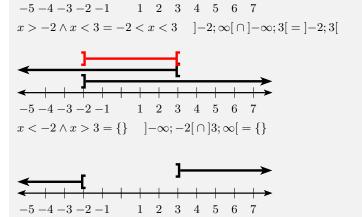
Ungleichheitszeichen

x < b	kleiner als	weniger als
x > b	größer als	mehr als
$x \leq b$	kleiner oder gleich	höchstens
$x \ge b$	größer oder gleich	mindestens

Intervalle in der Mengenschreibweise

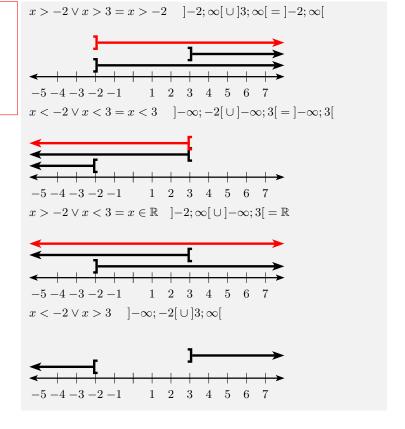
offenes Inter	offenes Intervall		
Intervall	Mengenschreibweise		
a < x < b	$]a;b[= \{x \in \mathbb{R} a < x < b\}]$		
x < b	$]-\infty; b[= \{x \in \mathbb{R} x < b\}$		
x > a	$]a; \infty[= \{x \in \mathbb{R} x > a\}$		


halboffenes Intervall


Intervall Mengenschreibweise $a < x \le b \quad]a;b] = \{x \in \mathbb{R} | a < x \le b\}$ $a \le x < b \quad [a;b[= \{x \in \mathbb{R} | a \le x < b\}]$ $x \le b \quad]-\infty;b] = \{x \in \mathbb{R} | x \le b\}$ $x \ge a \quad [a;\infty[= \{x \in \mathbb{R} | x \ge a\}]$

abgeschlossenes Intervall		
Intervall Mengenschreibweise		
$a \le x \le b$	$[a;b] = \{x \in \mathbb{R} a \le x \le b\}$	

Schnittmenge \cap - und zugleich \wedge


$a < b$ $\mathbb{G} = \mathbb{R}$			
Intervall		Mengen	
$x > a \land x > b$	x > b	$]a;\infty[\cap]b;\infty[$	$]b;\infty[$
$x < a \land x < b$	x < a	$]{-\infty};a[\cap]{-\infty};b[$	$]-\infty;a[$
$x > a \land x < b$	a < x < b	$]a;\infty[\cap]-\infty;b[$]a;b[
$x < a \land x > b$	{}	$]-\infty;a[\cap]b;\infty[$	{}

Vereinigungsmenge \cup - oder auch \vee

$a < b$ $\mathbb{G} = \mathbb{R}$			
Intervall		Mengen	
$x > a \lor x > b$	x > a	$]a;\infty[\;\cup\;]b;\infty[$	$]a;\infty[$
$x < a \lor x < b$	x < b	$]{-\infty};a[\;\cup\;]{-\infty};b[$	$]-\infty;b[$
$x > a \lor x < b$	$x \in \mathbb{R}$	$]a;\infty[\;\cup\;]-\infty;b[$	\mathbb{R}
$x < a \lor x > b$		$]-\infty;a[\;\cup\;]b;\infty[$	$\mathbb{R}\setminus [a;b]$

1.4.2 Äquivalenzumformung

Durch eine Äquivalenzumformung ändert sich die Lösungsmenge einer Ungleichung nicht.

Äquivalenzumformungen von Ungleichungen

- \bullet Vertauschen der beiden Seiten \Rightarrow Umdrehen des Ungleichheitszeichens
- Addition des gleichen Terms (Zahl) auf beiden Seiten
- Subtraktion des gleichen Terms auf beiden Seiten
- Multiplikation mit dem gleichen Term (ungleich Null) auf beiden Seiten

Multiplikation mit einer negativen Zahl $\Rightarrow~$ Umdrehen des Ungleichheitszeichens

• Division durch mit dem gleichen Term (ungleich Null) auf beiden Seiten

Division mit einer negativen Zahl \Rightarrow Umdrehen des Ungleichheitszeichens

Vertauschen der beiden Seiten

$$x - 2 > 8$$
 $8 < x - 2$

Addition des gleichen Terms auf beiden Seiten

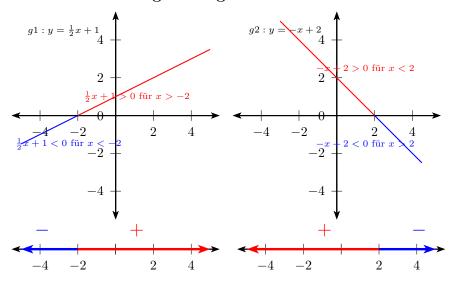
$$x-2 > 8$$
 / + 2

$$x - 2 + 2 > 8 + 2$$

Subtraktion des gleichen Terms auf beiden Seiten

$$3x - 2 \le 2x + 3$$
 / $-2x$

$$3x - 2x - 2 \le 2x - 2x + 3$$


$$x - 2 < 3$$

Multiplikation mit dem gleichen Term auf beiden Seiten

$$\begin{array}{c|c} \frac{x}{2} < -4 & / \cdot 2 & \frac{x}{-2} < -4 & \cdot (-2) \\ \frac{x}{2} \cdot 2 < -4 \cdot 2 & \frac{x}{-2} \cdot (-2) > -4 \cdot (-2) \\ x < -8 & x > 8 \end{array}$$

Division durch mit dem gleichen Term auf beiden Seiten

1.4.3 Lineare Ungleichung

54

Algebraische Lösung

$$ax + b > 0 \qquad (>, <, \le, \ge)$$

- Klammern auflösen
- Terme zusammenfassen
- Äquivalenzumformung: Alle Terme mit der Variablen auf die linke Seite und alle Terme ohne Variable auf die rechte Seite.
- durch die Zahl vor der Variablen dividieren

Division oder Multiplikation mit einer negativen Zahl \Rightarrow Umdrehen des Ungleichheitszeichens

```
2\frac{1}{2}x + 5 \le 4(x-2) - 2x + 12
Klammern auflösen
2\frac{1}{2}x + 5 \le 4x - 8 - 2x + 12
Terme zusammenfassen
2\frac{1}{2}x + 5 \le 2x + 4
Äquivalenzumformung:
2\frac{1}{2}x + 5 \le 2x + 4
                      / - 5
                                    /-2x
2\frac{1}{2}x - 2x \le 4 - 5
durch die Zahl vor der Variablen dividieren
\frac{1}{2}x \le -1
              /:\frac{1}{2}
x \leq -2
                x \in ]-\infty;2[
-x + 2 > 0
-x + 2 = 0
                 / - 2
-x > -2 /: (-1)
           x \in ]-\infty;2[
```

Graphische Lösung

$$ax + b > 0 \qquad (>, <, \leq, \geq)$$

- Klammern auflösen
- Terme zusammenfassen
- Äquivalenzumformung: Alle Terme auf die linke Seite
- Term als Funktion schreiben
- Nullstelle berechnen
- Graph der Funktion zeichnen
- Graph oberhalb der x-Achse y > 0
- Graph ist unterhalb der x-Achse y < 0
- x-Bereich aus dem Graphen ablesen

$$\begin{aligned} 2\frac{1}{2}x + 5 &\leq 4(x - 2) - 2x + 12 \\ \text{Klammern auflösen} \\ 2\frac{1}{2}x + 5 &\leq 4x - 8 - 2x + 12 \\ \text{Terme zusammenfassen} \\ 2\frac{1}{2}x + 5 &\leq 2x + 4 \\ \text{Aquivalenzumformung} \\ 2\frac{1}{2}x + 5 &\leq 2x + 4 \\ \text{/} - 5 \\ \text{/} - 2x \\ \frac{1}{2}x + 1 &\leq 0 \\ y &\leq 0 \end{aligned}$$

$$\text{Term als Funktion schreiben} \\ g_1 : y &= \frac{1}{2}x + 1 \\ \text{Nullstelle berechnen} \\ \frac{1}{2}x + 1 &= 0 \\ \text{/} - 1 \\ \frac{1}{2}x &= -1 \\ \text{/} : \frac{1}{2} \\ x &= -2 \end{aligned}$$

$$\text{Graph zeichnen } g_1 \\ y &\leq 0 \quad \text{der Graph ist unterhalb der x-Achse} \\ \text{x-Bereich aus dem Graphen ablesen} \\ x &\leq -2 \qquad x \in] - \infty; -2] \\ -x + 2 &> 0 \\ \text{Term als Funktion schreiben} \\ g_2 : y &= -x + 2 \quad y > 0 \\ \text{Nullstelle berechnen} \\ -x + 2 &= 0 \\ -2 \\ -x &= -2 \\ \text{/} : (-1) \\ x &= 2 \\ \text{Graph zeichnen} \\ g_2 \\ y &> 0 \quad \text{der Graph ist oberhalb der x-Achse} \\ \text{x-Bereich aus dem Graphen ablesen} \\ x &< 2 &\in] - \infty; 2[\end{aligned}$$

Vorzeichentabelle

ax + b > 0 $(>, <, \le, \ge)$

- Klammern auflösen
- Terme zusammenfassen
- Äquivalenzumformung: Alle Terme auf die linke Seite
- Term als Funktion schreiben
- Nullstelle berechnen
- Vorzeichentabelle:

Das Vorzeichen einer linearen Funktion kann sich nur an den Nullstellen ändern. Einen beliebigen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen des Funktionswerts in die Vorzeichentabelle eintragen.

• x-Bereich aus der Vorzeichentabelle ablesen

	x <	x_1	< x
y	+	0	_
	ax + b > 0		ax + b < 0

	x <	x_1	< x
y	-	0	+
	ax + b < 0		ax + b > 0

 $\frac{1}{2}x + 1 \le 0$

 $\bar{y} \leq 0$ – negative Funktionswerte

Term als Funktion schreiben

 $g_1: y = \frac{1}{2}x + 1$

Nullstelle berechnen

$$\frac{1}{2}x + 1 = 0$$
 / - 1
 $\frac{1}{2}x = -1$ / : $\frac{1}{2}$

$$\tilde{x} = -2$$

Wert kleiner als die Nullstelle wählen: x=-4 $g1:y=\frac{1}{2}\cdot(-4)+1=-1$ Minuszeichen eintragen Wert größer als die Nullstelle wählen: x=0 $g1:y=\frac{1}{2}\cdot(0)+1=+1$ Pluszeichen eintragen Vorzeichentabelle:

	x <	-2	< x
y		0	+
	$\frac{1}{2}x + 1 < 0$		$\frac{1}{2}x + 1 > 0$

Lösung der Ungleichung: $\frac{1}{2}x + 1 \le 0$ $x \le -2$ $x \in]-\infty; -2]$

$$-x + 2 > 0$$

y > 0 +positive Funktionswerte

Term als Funktion schreiben

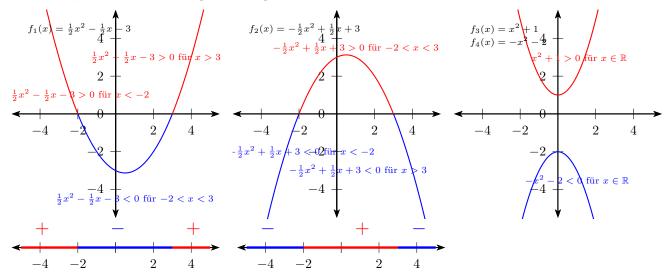
$$g_2: y = -x + 2$$

Nullstelle berechnen

$$-x + 2 = 0$$
 / -2

$$-x = -2 \qquad /: (-1)$$

$$x = 2$$


Wert kleiner als die Nullstelle wählen: x=0 g2:y=-0+1=+1 Pluszeichen eintragen Wert größer als die Nullstelle wählen: x=2 g2:y=-2+1=-1 Minuszeichen eintragen Vorzeichentabelle:

	x <	2	< x
y	+	0	_
	-x + 2 > 0 $x < 2$		-x+2 < 0 x > 2

Lösung der Ungleichung: -x + 2 > 0

$$x < 2$$
 $x \in]-\infty; 2[$

1.4.4 Quadratische Ungleichung

Algebraische Lösung

$$ax^2 + bx + c > 0$$
 $(>, <, \le, \ge)$

- 1. Methode
- Ungleichung nach Null auflösen
- quadratische Ergänzung
- quadratischen Term alleinstellen
- Wurzelziehen und Betrag schreiben
- Betragsungleichung lösen
- ullet 2. Methode
- Ungleichung nach Null auflösen
- Term faktorisieren

$$a(x-x_1)(x-x_2)$$

- Auspalten in lineare Ungleichungen

1. Fall
$$a(x-x_1)(x-x_2) > 0$$

 $(+\cdot + = +) \lor (-\cdot - = +)$
 $(a(x-x_1) > 0 \land x - x_2 > 0) \lor$
 $(a(x-x_1) < 0 \land x - x_2 < 0)$
2. Fall $a(x-x_1)(x-x_2) < 0$

2. Fall
$$a(x-x_1)(x-x_2) < 0$$

 $(+\cdot - = -) \lor (-\cdot + = -)$
 $(a(x-x_1) > 0 \land x - x_2 < 0) \lor$
 $(a(x-x_1) < 0 \land x - x_2 > 0)$

- Zusammenfassen der einzelnen Lösungen

1. Methode $\frac{1}{2}x^2 - \frac{1}{2}x - 3 > 0$ quadratische Ergänzung $\frac{1}{2}(x^2 - x + \frac{1}{2}^2 - \frac{1}{2}^2 - 6) > 0$ $\frac{1}{2}[(x - \frac{1}{2})^2 - \frac{1}{4} - 6] > 0$ $\frac{1}{2}[(x - \frac{1}{2})^2 - 6\frac{1}{4}] > 0$ $\frac{1}{2}(x - \frac{1}{2})^2 - 3\frac{1}{8} > 0$ quadratischen Term alleinstellen $(x - \frac{1}{2})^2 > \frac{25}{4}$ Wurzelziehen und Betrag schreiben $|x - \frac{1}{2}| > \frac{5}{2}$ Betragsungleichung $x > 3 \quad \forall \quad x < -2$ 2. Methode

2. Methode $\begin{array}{l} \frac{1}{2}x^2-\frac{1}{2}x-3>0\\ \text{Term faktorisieren}\\ \frac{1}{2}x^2-\frac{1}{2}x-3=0\\ x_1=3 \qquad x_2=-2\\ \frac{1}{2}(x+2)(x-3)>0\\ \text{Aufspalten in lineare Ungleichungen}\\ (\frac{1}{2}(x+2)>0\wedge x-3>0)\vee(\frac{1}{2}(x+2)<0\wedge x-3<0)\\ (x>-2\wedge x>3)\vee(x<-2\wedge x<3)\\ \text{Lösungen zusammenfassen}\\ x>3\vee x<-2 \end{array}$

Graphische Lösung

$$ax^2 + bx + c > 0$$
 $(>, <, \le, \ge)$

• Äquivalenzumformung: Alle Terme auf die linke Seite

• Term als Funktion schreiben

• Nullstelle berechnen

• Graph der Funktion zeichnen

• Graph oberhalb der x-Achse f(x) > 0

• Graph unterhalb der x-Achse f(x) < 0

• x-Bereich aus dem Graphen ablesen

$$\frac{1}{2}x^2 - \frac{1}{2}x - 3 > 0$$

$$f_1(x) > 0$$

Term als Funktion schreiben

$$f_1(x) = \frac{1}{2}x^2 - \frac{1}{2}x - 3$$

Nullstelle berechnen

$$\frac{1}{2}x^2 - \frac{1}{2}x - 3 = 0$$

$$x_{1/2} = \frac{+\frac{1}{2} \pm \sqrt{\left(-\frac{1}{2}\right)^2 - 4 \cdot \frac{1}{2} \cdot (-3)}}{2 \cdot \frac{1}{2}}$$

$$x_1 = 3$$
 $x_2 = -2$

Graph zeichnen $f_1(x)$

 $\frac{1}{2}x^2 - \frac{1}{2}x - 3 > 0$ der Graph ist oberhalb der x-Achse x-Bereich aus dem Graphen ablesen

 $x > 3 \lor x < -2$

Vorzeichentabelle

$$ax^2 + bx + c > 0$$
 $(>, <, \le, \ge)$

• Äquivalenzumformung: Alle Terme auf die linke Seite

• Term als Funktion schreiben

• Nullstelle berechnen

• Vorzeichentabelle:

Das Vorzeichen einer quadratischen Funktion kann sich nur an den Nullstellen ändern. Einen beliebigen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen des Funktionswerts in die Vorzeichentabelle eintragen.

• x-Bereich aus der Vorzeichentabelle ablesen

$$\frac{1}{2}x^2 - \frac{1}{2}x - 3 > 0$$

$$f_1(x) > 0$$

Term als Funktion schreiben

$$f_1(x) = \frac{1}{2}x^2 - \frac{1}{2}x - 3$$

Nullstelle berechnen

$$\frac{1}{2}x^2 - \frac{1}{2}x - 3 = 0$$

$$x_{1/2} = \frac{+\frac{1}{2} \pm \sqrt{(-\frac{1}{2})^2 - 4 \cdot \frac{1}{2} \cdot (-3)}}{2 \cdot \frac{1}{2}}$$

$$x_1 = -2$$
 $x_2 = 3$

Wert kleiner als die Nullstelle $x_1 = -2$ wählen x = -4

 $f_1(-4) = +7$ Pluszeichen eintragen

Wert zwischen $x_1 = -2$ und $x_2 = 3$ wählen x = 0

 $f_1(0) = -3$ Minuszeichen eintragen

Wert größer als die Nullstelle $x_2 = 3$ wählen x = 4

 $f_1(4) = +3$ Pluszeichen eintragen

Vorzeichentabelle:

	x <	-2	< x <	3	< x
f(x)	+	0	_	0	+

$$\frac{1}{2}x^2 - \frac{1}{2}x - 3 > 0$$

x-Bereiche aus der Vorzeichentabelle ablesen

$$x \in]-\infty; -2[\cup]3; \infty[$$

Betragsungleichung

$$|ax + b| > c$$

• Aufspalten der Beträge in einzelne Intervalle.

Betragsstriche sind nicht nötig, wenn der Term des Betrags positiv ist. $ax + b \ge 0$ für $x \ge \frac{-b}{a}$

Betragsstriche sind nicht nötig, wenn der Term des Betrags negativ ist und dafür zusätzlich ein Minuszeichen vor dem

Term geschrieben wird. ax + b < 0 für $x < \frac{-b}{a}$

$$|ax + b| = \begin{cases} (ax + b) & x \ge \frac{-b}{a} \\ -(ax + b) & x < \frac{-b}{a} \end{cases}$$

• 1. Lösung für $x \ge$

$$ax + b > c$$

$$\begin{array}{lll} ax+b>c & /-b & /:a & & (a>0) \\ x>\frac{c-b}{} & & \end{array}$$

- 1. Lösung ist die Schnittmenge aus $x \ge \frac{-b}{a} \land x > \frac{c-b}{a}$
- 2. Lösung für $x < \frac{-b}{a}$

$$-(ax+b) > c$$
 /: (-1)

$$ax + b < -c$$

$$ax+b<-c\quad /-b\quad /:a\quad (a>0)$$

$$x < \frac{-c-b}{a}$$

- 2. Lösung ist die Schnittmenge aus $x < \frac{-b}{a} \wedge x < \frac{-c-b}{a}$
- Gesamtlösung aus Vereinigungsmenge von 1. Lösung und
- 2. Lösung

$$\begin{array}{l} |2x+3| > 7 \\ |2x+3| = \left\{ \begin{array}{ll} (2x+3) & x \geq \frac{-3}{2} \\ -(2x+3) & x < \frac{-3}{2} \end{array} \right. \\ \bullet \ 1. \ \text{L\"{o}sung f\"{u}r} \ x \geq \frac{-3}{2} \end{array}$$

$$2x + 3 > 7$$

$$2x + 3 > 7 / -3 / : 2$$

- 1. Lösung ist die Schnittmenge aus $x \ge \frac{-3}{2} \land x > 2$
- 1. Lösung x > 2
- 2. Lösung für $x < \frac{-3}{2}$

$$-(2x+3) > 7$$

$$2x + 3 < -7$$
 $/ - 3$ $/ : 2$

$$x < -5$$

- 2. Lösung ist die Schnittmenge aus $x < \frac{-3}{2} \land x < -5$
- 2. Lösung x < -5

Vereinigungsmenge aus 1. Lösung und 2. Lösung $x > 2 \quad \lor \quad x < -5$

$$|2x + 3| < 7$$

$$|2x+3| = \begin{cases} (2x+3) & x \ge \frac{-3}{2} \\ -(2x+3) & x < \frac{-3}{2} \end{cases}$$
• 1. Lösung für $x \ge \frac{-3}{2}$

$$2x + 3 < 7$$

$$2x + 3 < 7 / -3 / : 2$$

- 1. Lösung ist die Schnittmenge aus $x \ge \frac{-3}{2} \land x < 2$
- 1. Lösung $\frac{-3}{2} \le x < 2$
- 2. Lösung für $x < \frac{-3}{2}$

$$-(2x+3) < 7$$

$$2x + 3 > -7$$
 / - 3 / : 2

$$c > -5$$

- 2. Lösung ist die Schnittmenge aus $x<\frac{-3}{2}\wedge x>-5$
- 2. Lösung $-5 < x < \frac{-3}{2}$

Vereinigungsmenge aus 1. Lösung und 2. Lösung -5 < x < 2

Lineares Gleichungssystem 1.5

Einsetzverfahren (2) 1.5.1

```
Ι
        a1 \cdot x + b1 \cdot y = c1
II
          a2 \cdot x + b2 \cdot y = c2
```

- Gleichung I oder II nach x oder y auflösen
- Term in die andere Gleichung einsetzen
- Gleichung nach der Unbekannten auflösen
- zweite Unbekannte berechnen

```
3x + 5y = 19
                                                                      3x + 5y = 19
       7x + 5y = 31
                                                                    7x + 5y = 31
I nach x auflösen
                                                            I nach v auflösen
3x + 5y = 19
                                                            3x + 5y = 19
3x + 5y = 19
                                                            3x + 5y = 19
                           /-5y
                                                                                        /-3x
3x = 19 - 5y
                                                             5y = 19 - 3x
                           /:3
                                                                                        /:5
x = 6\frac{1}{3} - 1\frac{2}{3}y
                                                            y = 3\frac{4}{5} - \frac{3}{5}x
7(6\frac{1}{3} - 1\frac{2}{3}y) + 5y = 3144\frac{1}{3} - 11\frac{2}{3}y + 5y = 31
                                                             7x + 5(3\frac{4}{5} - \frac{3}{5}x) = 31
                                                             19 - 3x + 5x = 31
                                                                                                / - 19
-11\frac{2}{3}y + 5y = 31 - 44\frac{1}{3}
                                                             -3x + 5x = 31 - 19
-6\frac{2}{3}y = -13\frac{1}{3} / : (-6\frac{2}{3})
                                                             4x = 12
                                                                            /:4
y = \frac{-13\frac{1}{3}}{-6\frac{2}{3}}
                                                            x = \frac{12}{4}
                                                            x = 3
                                                            y = 3\frac{4}{5} - \frac{3}{5}x
y = 3\frac{4}{5} - \frac{3}{5} \cdot 3
y = 2
x = 6\frac{1}{3} - 1\frac{2}{3}y
x = 6\frac{1}{3} - 1\frac{2}{3} \cdot 2
                                                            y=2
x = 3
                                                             L = \{3/2\}
L = \{3/2\}
```

3x + 5y = 19

/-5y

/-5y

/:7

/:3

Interaktive Inhalte:

hier klicken

Gleichsetzungsverfahren (2) 1.5.2

$$I a1 \cdot x + b1 \cdot y = c1$$

$$II a2 \cdot x + b2 \cdot y = c2$$

- beide Gleichungen nach x oder y auflösen
- Terme gleichsetzen
- Gleichung nach der Unbekannten auflösen
- zweite Unbekannte berechnen

3x + 5y = 19

Interaktive Inhalte:

1.5.3 Additionsverfahren (2)

$$I a1 \cdot x + b1 \cdot y = c1$$

$$II a2 \cdot x + b2 \cdot y = c2$$

- Terme mit x und y müssen untereinander stehen
- Gleichungen multiplizieren, so dass die Variablen beim spaltenweisen addieren herausfallen
- Gleichung nach der Unbekannten auflösen
- zweite Unbekannte berechnen

$$I \quad 3x + 5y = 19$$

$$II \quad 7x + 5y = 31$$

$$I \quad 3x + 5y = 19 \quad / \cdot 7$$

$$II \quad 7x + 5y = 31 \quad / \cdot (-3)$$

$$I \quad 21x + 35y = 133$$

$$II \quad -21x - 15y = -93$$

$$I + II$$

$$21x - 21x + 35y - 15y = 133 - 93$$

$$20y = 40 \quad / : 20$$

$$y = \frac{40}{20}$$

$$y = 2$$

$$y \text{ in } I$$

$$I \quad 3x + 5 \cdot 2 = 19$$

$$3x + 10 = 19 \quad / -10$$

$$3x = 19 - 10$$

$$3x = 9 \quad / : 3$$

$$x = \frac{9}{3}$$

$$x = 3$$

$$L = \{3/2\}$$

$$I \quad 3x + 5y = 19$$

$$II \quad 7x + 5y = 31$$

$$I \quad 3x + 5y = 19 \quad / \cdot 1$$

$$II \quad 7x + 5y = 31 \quad / \cdot (-1)$$

$$I \quad 3x + 5y = 19$$

$$II \quad -7x - 5y = -31$$

$$I + II$$

$$3x - 7x + 5y - 5y = 19 - 31$$

$$-4x = -12 \quad / \cdot (-4)$$

$$x = \frac{-12}{-4}$$

$$x = 3$$

$$x \text{ in I}$$

$$I \quad 3 \cdot 3 + 5y = 19$$

$$5y + 9 = 19 \quad / - 9$$

$$5y = 19 - 9$$

$$5y = 10 \quad / \cdot 5$$

$$y = \frac{10}{5}$$

$$y = 2$$

$$L = \{3/2\}$$

Interaktive Inhalte:

hier klicken

1.5.4 Determinantenverfahren (2)

$$I a1 \cdot x + b1 \cdot y = c1$$

$$II a2 \cdot x + b2 \cdot y = c2$$

$$D_h = \begin{vmatrix} a1 & b1 \\ a2 & b2 \end{vmatrix} = a1 \cdot b2 - b1 \cdot a2$$

$$D_x = \begin{vmatrix} c1 & b1 \\ c2 & b2 \end{vmatrix} = c1 \cdot b2 - b1 \cdot c2$$

$$D_y = \begin{vmatrix} a1 & c1 \\ a2 & c2 \end{vmatrix} = a1 \cdot c2 - c1 \cdot a2$$

• Eindeutige Lösung $D_h \neq 0$

$$x = \frac{D_x}{D_h}$$
$$y = \frac{D_y}{D_h}$$

• Keine Lösung $D_h = 0$

 $D_x \neq 0 \text{ oder } D_y \neq 0$

• Unendlich viele Lösungen

$$D_h = D_x = D_y = 0$$

$$I \quad 3x + 5y = 19$$

$$II \quad 7x + 5y = 31$$

$$D_h = \begin{vmatrix} 3 & 5 \\ 7 & 5 \end{vmatrix} = 3 \cdot 5 - 5 \cdot 7 = -20$$

$$D_x = \begin{vmatrix} 19 & 5 \\ 31 & 5 \end{vmatrix} = 19 \cdot 5 - 5 \cdot 31 = -60$$

$$D_y = \begin{vmatrix} 3 & 19 \\ 7 & 31 \end{vmatrix} = 3 \cdot 31 - 19 \cdot 7 = -40$$

$$x = \frac{-60}{-20}$$

$$x = 3$$

$$y = \frac{-40}{-20}$$

$$y = 2$$

$$L = \{3/2\}$$

Interaktive Inhalte:

1.5.5 Determinantenverfahren (3)

$$a1x + b1y + c1z = d1$$

$$a2x + b2y + c2z = d2$$

$$a3x + b3y + c3z = d3$$

$$D_h = \begin{vmatrix} a1 & b1 & c1 & a1 & b1 \\ a2 & b2 & c2 & a2 & b2 \\ a3 & b3 & c3 & a3 & b3 \end{vmatrix}$$

$$D_h = a1 \cdot b2 \cdot c3 + b1 \cdot c2 \cdot a3 + c1 \cdot a2 \cdot b3$$

$$-c1 \cdot b2 \cdot a3 - a1 \cdot c2 \cdot b3 - b1 \cdot a2 \cdot c3$$

$$\begin{vmatrix} d1 & b1 & c1 & d1 & b1 \\ d2 & b2 & c2 & d2 & b2 \\ d3 & b3 & c3 & d3 & b3 \end{vmatrix}$$

$$D_x = \begin{vmatrix} d1 & b1 & c1 & d1 & b1 \\ d2 & b2 & c2 & d2 & b2 \\ d3 & b3 & c3 & d3 & b3 \end{vmatrix}$$

$$D_x = d1 \cdot b2 \cdot c3 + b1 \cdot c2 \cdot d3 + c1 \cdot d2 \cdot b3$$

$$-c1 \cdot b2 \cdot d3 - d1 \cdot c2 \cdot b3 - b1 \cdot d2 \cdot c3$$

$$\begin{vmatrix} a1 & d1 & c1 & a1 & d1 \\ a2 & d2 & c2 & a2 & d2 \\ a3 & d3 & c3 & a3 & d3 \end{vmatrix}$$

$$D_y = a1 \cdot d2 \cdot c3 + d1 \cdot c2 \cdot a3 + c1 \cdot a2 \cdot d3$$

$$-c1 \cdot d2 \cdot a3 - a1 \cdot c2 \cdot d3 - d1 \cdot a2 \cdot c3$$

$$\begin{vmatrix} a1 & b1 & d1 & a1 & b1 \\ b2 & a2 & b2 & d2 & a2 & b2 \\ a3 & b3 & d3 & a3 & b3 \end{vmatrix}$$

$$D_z = a1 \cdot b2 \cdot d3 + b1 \cdot d2 \cdot a3 + d1 \cdot a2 \cdot b3$$

$$-d1 \cdot b2 \cdot a3 - a1 \cdot d2 \cdot b3 - b1 \cdot a2 \cdot d3 = 0$$

• Eindeutige Lösung
$$D_h \neq 0$$

$$x = \frac{D_x}{D_h}$$
$$y = \frac{D_y}{D_h}$$
$$z = \frac{D_z}{D_h}$$

• Keine Lösung $D_h = 0$

 $D_x \neq 0$ oder $D_y \neq 0$ oder $D_z \neq 0$

• Unendlich viele Lösungen

$$D_h = D_x = D_y = D_z = 0$$

Interaktive Inhalte:

```
11x + 13y + 4z = 37
12x + 14y + 5z = 40
9x + 3y + 3z = 15
          11 13 4
                            11 13
D_h = | 12 14 5
                           12 14
        9 3 3 9
D_h = 11 \cdot 14 \cdot 3 + 13 \cdot 5 \cdot 9 + 4 \cdot 12 \cdot 3
-4 \cdot 14 \cdot 9 - 11 \cdot 5 \cdot 3 - 13 \cdot 12 \cdot 3 = 54
         37 13 4
                           37 13
D_x = | 40 	 14 	 5
                           40 14
         15 3 3 15
D_x = 37 \cdot 14 \cdot 3 + 13 \cdot 5 \cdot 15 + 4 \cdot 40 \cdot 3
-4 \cdot 14 \cdot 15 - 37 \cdot 5 \cdot 3 - 13 \cdot 40 \cdot 3 = 54
         11 37 4 | 11 37
D_y = | 12 	 40 	 5 |
                           12
        9 15 3 9 15
D_y = 11 \cdot 40 \cdot 3 + 37 \cdot 5 \cdot 9 + 4 \cdot 12 \cdot 15
-4 \cdot 40 \cdot 9 - 11 \cdot 5 \cdot 15 - 37 \cdot 12 \cdot 3 = 108
        11 13 37 | 11 13
D_z = | 12 	 14 	 40
                           12 14
              3 \ 15 \ 9 \ 3
D_z = 11 \cdot 14 \cdot 15 + 13 \cdot 40 \cdot 9 + 37 \cdot 12 \cdot 3
-37 \cdot 14 \cdot 9 - 11 \cdot 40 \cdot 3 - 13 \cdot 12 \cdot 15 = 0
x = \frac{54}{54}
y = 2
z = 0
L = \{1/2/0\}
```

1.6 Lineare Algebra

1.6.1 Matrix

Definition

Eine $m \times n$ –Matrix ist ein rechteckiges Zahlenschema aus m Zeilen und n Spalten.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$A = (a_{ik})$$

 a_{ik} : Elemente der Matrix

i: Zeilenindex

k: Spaltenindex

• Quadratische Matrix

Die Anzahl der Zeilen ist gleich der Anzahl der Spalten.

$$\begin{aligned} m &= n \\ A &= \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right] \qquad B = \left[\begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] \end{aligned}$$

 3×3 Quadratische Matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$a_{11} = 1 \quad a_{12} = 2 \quad a_{13} = 3$$

$$a_{21} = 4 \quad a_{22} = 5 \quad a_{23} = 6$$

$$a_{31} = 7 \quad a_{32} = 8 \quad a_{33} = 9$$

 2×3 Matrix

$$B = \left[\begin{array}{ccc} 1 & 0 & 13 \\ 4 & 5 & 6 \end{array} \right]$$

 1×3 Zeilenmatrix (Zeilenvektor) $C=\left[\begin{array}{ccc}1&4&5\end{array}\right]$

 3×1 Spaltenmatrix (Spaltenvektor)

$$D = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Besondere Matrizen

 \bullet Einheitsmatrix

$$E_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] E_2 = \left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

• Transponierte Matrix

Vertauschen von Zeilen- und Spaltenindex.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad A^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

$$A = (A^T)^T$$

symmetrische Matrix

$$\begin{bmatrix} 10 & 4 & -2 \\ 4 & 3 & 6 \\ -2 & 6 & 5 \end{bmatrix}$$

obere Dreiecksmatrix

$$\left[\begin{array}{cccc}
10 & 4 & -2 \\
0 & 3 & 6 \\
0 & 0 & 5
\end{array}\right]$$

untere Dreiecksmatrix

$$\left[\begin{array}{ccc} 10 & 0 & 0 \\ 4 & 3 & 0 \\ -2 & 6 & 5 \end{array}\right]$$

Diagonalmatrix

$$\left[\begin{array}{ccc} 10 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{array}\right]$$

Nullmatrix

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$$

Transponierte Matrix

Transponer te Matrix
$$\begin{bmatrix} 1 & 2 & 4 & 5 \end{bmatrix}^T = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 0 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 4 & 0 \end{bmatrix}$$

Addition von Matrizen

Summe der Matrix $A = (a_{ik})$ und der Matrix $B = (b_{ik})$ Die Anzahl der Spalten (i) und der Zeilen(k) der beiden Matrizen müssen gleich sein. $A + B = a_{ik} + b_{ik}$

• Summe 3×3 Matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + a_{33} \end{bmatrix}$$

Summe zweier 2×3 Matrizen $\begin{bmatrix} 1 & 7 & 0 \\ 0 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 7 & 1 \\ 0 & 2 & 7 \end{bmatrix}$

Multiplikation von Matrizen

• Produkt aus der Matrix $A=(a_{ik})$ mit einer Konstanten $\lambda \in \mathbb{R}$:

 $\lambda A = \lambda a_{ik}$

 $2 \times 2 \text{ Matrix}$ $\lambda \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} \\ \lambda a_{12} & \lambda a_{22} \end{bmatrix}$

• Produkt aus Matrix $A = (a_{ij})$ und Matrix $B = (b_{jk})$ Anzahl der Zeilen von A muss gleich der Anzahl der Spalten von B sein.

Zeilenelemente von A mal Spaltenelemente von B.

 \bullet Produkt zweier 2×2 Matrizen

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \\ \begin{bmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} & a_{11} \cdot b_{12} + a_{12} \cdot b_{22} \\ a_{21} \cdot b_{11} + a_{22} \cdot b_{21} & a_{21} \cdot b_{21} + a_{22} \cdot b_{22} \end{bmatrix}$$

Produkt 2×3 Matrix mit 3 $3 \cdot \begin{bmatrix} 1 & 0 & 5 \\ 0 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 15 \\ 0 & 12 & 6 \end{bmatrix}$ Produkt 2×3 Matrix mit einer 3×2 Matrix

$$\begin{bmatrix} 3 & 4 & -1 \\ 2 & -7 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \cdot 1 + 4 \cdot (-2) + 1 \cdot 3 \\ 2 \cdot 2 + (-7) \cdot (-2) + 6 \cdot 3 \end{bmatrix} = \begin{bmatrix} -8 \\ 34 \end{bmatrix}$$

Algebra Lineare Algebra

Inverse Matrix

 \bullet Produkt aus der Matrix A und der inversen Matrix A^{-1} ist gleich der Einheitsmatrix.

$$AA^{-1} = E$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Die inverse Matrix ist nur möglich, wenn die Determinante von A ungleich Null ist.

 $\det A \neq 0$

 \bullet Berechnung von A^{-1} mit dem Gauß-Jordan-Algorithmus Matrix A und Einheitsmatrix E in der Form schreiben

$$\begin{array}{c|cccc} & & A & & E \\ \hline a_{11} & a_{12} & 1 & 0 \\ a_{21} & a_{22} & 0 & 1 \\ \end{array}$$

Umformen durch:

- Multiplizieren oder Dividieren der Zeilen mit einer Zahl
- Addieren oder Subtrahieren der Zeilen
- Vertauschen der Zeilen

in die Form Einheitsmatrix und inverse Matrix A^-1 bringen.

$$\begin{array}{c|cccc}
E & A^{-1} \\
\hline
1 & 0 & x_{11} & x_{12} \\
0 & 1 & x_{21} & x_{22}
\end{array}$$

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$$

$$det(A) = (-10) \Rightarrow \text{Matrix ist invertierbar}$$

$$A^{-1} = \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}^{-1}$$

$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\text{Zeile2} = \text{Zeile2} \cdot \text{Zeile1} \cdot \frac{4}{2}$$

$$a21 = 4 - 2 \cdot \frac{4}{2} = 0$$

$$a22 = 1 - 3 \cdot \frac{3}{2} = -5$$

$$b21 = 0 - 1 \cdot \frac{4}{3} = 0$$

$$b22 = 1 - 0 \cdot \frac{3}{2} = 1$$

$$\begin{bmatrix} 2 & 3 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$\text{Zeile1} = \text{Zeile1} \cdot \text{Zeile2} \cdot \frac{3}{-5} = 0$$

$$b11 = 1 - (-2) \cdot \frac{3}{-5} = 1$$

$$b12 = 0 - 1 \cdot \frac{3}{-5} = 1$$

$$b12 = 0 - 1 \cdot \frac{3}{-5} = 0$$

$$\begin{bmatrix} 2 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} -\frac{1}{5} & \frac{3}{5} \\ -2 & 1 \end{bmatrix}$$

$$\text{Zeile1} = \text{Zeile1} : 2$$

$$\text{Zeile2} = \text{Zeile2} : -5$$

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{3}{10} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 5 & -1 \\ 1 & 2 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} E & E' = A^{-1} \\ 1 & 0 & 0 & 2 & -2 & 3 \\ 2 & 5 & -1 & 0 & 1 & 0 & 0 & 1 & 0 & -1 & 1 & -1 \\ 1 & 2 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -1 & 0 & 1 \end{bmatrix}$$

Eigenwert und Eigenvektor

Gegegeben: A - Matrix

Gesucht: x - Eigenvektor (Spaltenvektor)

 λ - Eigenwert

Das Produkt aus Matrix A und Eigenvektor x ist gleich dem Produkt aus Eigenwert λ und Eigenvektor x.

$$\begin{bmatrix} Ax = \lambda x \\ a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix} = \lambda \begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix}$$

• Eigenwert aus folgender Gleichung:

$$\det(A - \lambda \cdot E) = 0$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\left| \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right| = 0$$

$$\left| \begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \right| = 0$$

$$(a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = 0$$

charakteristisches Polynom:

$$\lambda^2 - (a_{11} + a_{22}) \cdot \lambda + a_{11} \cdot a_{22} - a_{21} \cdot a_{12} = 0$$

 \bullet Eigenvektoren durch einsetzen der λ -Werte

$$\begin{split} &(A-\lambda E)x=0\\ &\begin{bmatrix} a_{11}-\lambda & a_{12}\\ a_{21} & a_{22}-\lambda \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}=0\\ &a_{11}\cdot x_1+a_{12}\cdot x_2=\lambda\cdot x_1\\ &a_{21}\cdot x_1+a_{22}\cdot x_2=\lambda\cdot x_2 \end{split}$$

Interaktive Inhalte:

Matrix

1.6.2 Determinante

Definition

Aus einer quadratischen Matrix kann eine Determinante (Zahlenwert) berechnet werden.

 $D = \det A = |A|$

Anwendung der Determinante:

- Lineare Gleichungssysteme
- Volumenberechnung im R3
- Flächenberechnungen im R2
- Spatprodukt
- Lineare Abhängigkeit von Vektoren inverse Matrix

$$A = \begin{bmatrix} 7 & 2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$$

$$\det(A - \lambda \cdot E) = 0$$

$$\begin{bmatrix} 7 - \lambda & 2 & 0 \\ -2 & 6 - \lambda & -2 \\ 0 & -2 & 5 - \lambda \end{bmatrix} = 0$$

2-reihige Determinante

Determinante einer 2×2 Matrix

$$D = \det A = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} a_{22} - a_{12} a_{21}$$

$$D = \det A = |A| = \begin{vmatrix} 3 & -2 \\ 4 & 5 \end{vmatrix} = 3 \cdot 5 - (-2) \cdot 4 = 23$$

3-reihige Determinante

Determinante einer 3×3 Matrix

Methode 1

$$D = \det A = |A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} =$$

$$a_{11}(a_{22} \cdot a_{33} - a_{23} \cdot a_{32}) - a_{12}(a_{21} \cdot a_{33} - a_{23} \cdot a_{31}) +$$

$$a_{13}(a_{21} \cdot a_{32} - a_{22} \cdot a_{31})$$

Methode 2 (Regel von Sarrus)

$$D = \begin{vmatrix} a_1^+ & b_1^+ & c_1^+ & a_1 & b_1 \\ a_2 & b_2 & c_2 & a_2 & b_2 \\ a_3 & b_3 & c_3 & a_3 & b_3 \\ D = a1 \cdot b2 \cdot c3 + b1 \cdot c2 \cdot a3 + c1 \cdot a2 \cdot b3 \\ -c1 \cdot b2 \cdot a3 - a1 \cdot c2 \cdot b3 - b1 \cdot a2 \cdot c3 \end{vmatrix}$$

 $D = \det A = |A| = \begin{vmatrix} 11 & 13 & 4 & | & 11 & 13 \\ 12 & 14 & 5 & | & 12 & 14 \\ 9 & 3 & 3 & | & 9 & 3 \\ D = 11 \cdot 14 \cdot 3 + 13 \cdot 5 \cdot 9 + 4 \cdot 12 \cdot 3 \\ -4 \cdot 14 \cdot 9 - 11 \cdot 5 \cdot 3 - 13 \cdot 12 \cdot 3 = 54 \end{vmatrix}$

$$D_{3} = \begin{vmatrix} 11 & 12 & 9 \\ 13 & 14 & 3 \\ 4 & 5 & 3 \end{vmatrix} = \begin{vmatrix} 11 \cdot \begin{vmatrix} 14 & 3 \\ 5 & 3 \end{vmatrix} - 13 \cdot \begin{vmatrix} 12 & 9 \\ 5 & 3 \end{vmatrix} + 4 \cdot \begin{vmatrix} 12 & 9 \\ 14 & 3 \end{vmatrix} = 54$$

$$D_{2} = \begin{vmatrix} 12 & 9 \\ 14 & 3 \end{vmatrix} = 12 \cdot 3 - 14 \cdot 9 = -90$$

$$D_{2} = \begin{vmatrix} 12 & 9 \\ 5 & 3 \end{vmatrix} = 12 \cdot 3 - 5 \cdot 9 = -9$$

$$D_{2} = \begin{vmatrix} 14 & 3 \\ 5 & 3 \end{vmatrix} = 14 \cdot 3 - 5 \cdot 3 = 27$$

$$D_{3} = 11 \cdot 27 - 13 \cdot (-9) + 4 \cdot (-90) = 54$$

$$det(D) = 54$$

Interaktive Inhalte:

hier klicken | hier klicken | Determinante

Algebra Lineare Algebra

1.6.3 Lineare Gleichungssysteme und Gauß-Algorithmus

Lineare Gleichungssysteme in Matrizenschreibweise

```
x=A^{-1}b
Ax = b
  A
       Koeffizientenmatrix
        Spaltenvektor der rechten Seite
       L\"{o}sungsvektor
 \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}
Inhomogenes Gleichungssystem:
a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1
a_{21} \cdot x_1 + a_{22} \cdot x_2 + \dots + a_{2n} \cdot x_n = b_2
a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + \dots + a_{mn} \cdot x_n = b_m
Homogenes Gleichungssystem:
a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = 0
a_{21} \cdot x_1 + a_{22} \cdot x_2 + \dots + a_{2n} \cdot x_n = 0
a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + \dots + a_{mn} \cdot x_n = 0
Variablen:x_1, x_2, x_3
a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 = b_1
a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 = b_2
a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 = b_m
oder in der Schreibweise mit den Variablen:x, y, z
a1 \cdot x + b1 \cdot y + c1 \cdot z = d1
a2 \cdot x + b2 \cdot y + c2 \cdot z = d2
a3 \cdot x + b3 \cdot y + c3 \cdot z = d3
Erweiterte Koeffizientenmatrix:
        y
       b1
 a1
            c1
                    d1
       b2 c2
                    d2
 a2
 a3
       b3 c3
                    d3
```

$$Ax = b$$

$$A = \begin{bmatrix} 11 & 13 & 4 \\ 12 & 14 & 5 \\ 9 & 3 & 3 \end{bmatrix} \qquad b = \begin{bmatrix} 37 \\ 40 \\ 15 \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\begin{bmatrix} 11 & 13 & 4 \\ 12 & 14 & 5 \\ 9 & 3 & 3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 37 \\ 40 \\ 15 \end{bmatrix}$$

$$11x_1 + 13x_2 + 4x_3 = 37$$

$$12x_1 + 14x_2 + 5x_3 = 40$$

$$9x_1 + 3x_2 + 3x_3 = 15$$
oder
$$11x + 13y + 4z = 37$$

$$12x + 14y + 5z = 40$$

$$9x + 3y + 3z = 15$$

$$x \quad y \quad z \mid$$

$$11 \quad 13 \quad 4 \quad 37$$

$$12 \quad 14 \quad 5 \quad 40$$

$$9 \quad 3 \quad 3 \quad 15$$

Gaußsches Eliminationsverfahren

$$a1 \cdot x + b1 \cdot y + c1 \cdot z = d1$$

$$a2 \cdot x + b2 \cdot y + c2 \cdot z = d2$$

$$a3 \cdot x + b3 \cdot y + c3 \cdot z = d3$$

Koeffizientenmatrix erstellen:

x	y	z	
a1	b1	c1	d1
a2	b2	c2	d2
a3	b3	c3	d3

x	y	z	
$\overline{Zeile1Spalte1}$	z1s2	z1s3	z1s4
z2s1	z2s2	z2s3	z2s4
z3s1	z3s2	z3s3	z3s4

Die Lösungsmenge ändert sich nicht durch:

- Multiplizieren oder Dividieren der Zeilen mit einer Zahl
- Addieren oder Subtrahieren der Zeilen
- Vertauschen der Zeilen

Umformen in die Stufenform

• Eindeutige Lösung

x	y	z	
Z1S1	z1s2		
0	z2s2	z2s3	z2s4
0	0	z3s3	

Rückwärtseinsetzen

$$z = \frac{z3s3}{z3s4}$$

z in die 2. Zeile einsetzen \Rightarrow y

z und y in die 1. Zeile einsetzen \Rightarrow x

• Keine Lösung

x	y	z	
Z1S1	z1s2	z1s3	z1s4
0	z2s2	z2s3	z2s4
0	0	0	z3s4

 \bullet Unendlich viele Lösungen

$$\begin{array}{c|ccccc} x & y & z & \\ \hline Z1S1 & z1s2 & z1s3 & z1s4 \\ 0 & z2s2 & z2s3 & z2s4 \\ 0 & 0 & 0 & 0 \\ \end{array}$$

Zeile3 = Zeile3 · (-2) - Zeile2 · (-84)

$$z3s2 = (-84) \cdot -2 - (-2) \cdot (-84) = 0$$

 $z3s3 = (-3) \cdot -2 - 7 \cdot (-84) = 594$
 $z3s4 = (-168) \cdot -2 - (-4) \cdot (-84) = 0$
 $x \quad y \quad z$
11 13 4 37
0 -2 7 -4
0 0 594 0

$$z = \frac{0}{594} = 0$$

$$y \cdot (-2) + 7 \cdot 0 = (-4)$$

$$y = 2$$

$$x \cdot 11 + 13 \cdot 2 + 4 \cdot 0 = 37$$

$$x = 1$$

$$L = \{1/2/0\}$$

Gauß-Jordan-Algorithmus

$$a1 \cdot x + b1 \cdot y + c1 \cdot z = d1$$

$$a2 \cdot x + b2 \cdot y + c2 \cdot z = d2$$
$$a3 \cdot x + b3 \cdot y + c3 \cdot z = d3$$

Koeffizientenmatrix erstellen:

x	y	z	
a1	b1	c1	d1
a2	b2	c2	d2
a3	b3	c3	d3

!			ı	
x	y	z		
Zeile1Spalte1				
z2s1		z2s3		
z3s1	z3s2	z3s3	z3s4	

Die Lösungsmenge ändert sich nicht durch:

- Multiplizieren oder Dividieren der Zeilen mit einer Zahl
- Addieren oder Subtrahieren der Zeilen
- Vertauschen der Zeilen

Ziel ist das Umformen in die Diagonalenform

• Eindeutige Lösung

x	y	z	
z1s1	0	0	z1s4
0	z2s3	0	z2s4
0	0	z3s3	z3s4
$x = \frac{z_1s}{z_1s}$			
$y = \frac{z2s}{z2s}$	$\frac{4}{3}$		
$z = \frac{z3s}{z3s}$	<u>3</u>		

• Keine Lösung

x	y	z	
z1s1	0	0	z1s4
0	z2s3	0	z2s4
0	0	0	z3s4

• Unendlich viele Lösungen

x	y	z	
z1s1	0	0	z1s4
0	z2s3	0	z2s4
0	0	0	0

Interaktive Inhalte:

hier klicken | n - Gleichungen | hier klicken

$$\begin{split} & \text{Zeile2} = \text{Zeile2} - \text{Zeile1} \cdot \frac{12}{11} \\ & z2s1 = 12 - 11 \cdot \frac{12}{11} = 0 \\ & z2s2 = 14 - 13 \cdot \frac{12}{11} = -\frac{2}{11} \\ & z2s3 = 5 - 4 \cdot \frac{12}{11} = \frac{7}{11} \\ & z2s4 = 40 - 37 \cdot \frac{12}{11} = -\frac{4}{11} \end{split} \qquad \begin{array}{c} & x & y & z \\ \hline 11 & 13 & 4 & 37 \\ 0 & -\frac{2}{11} & \frac{7}{11} & -\frac{4}{11} \\ 9 & 3 & 3 & 15 \\ \hline \end{array}$$

$$\begin{array}{l} \text{Zeile3} = \text{Zeile3} - \text{Zeile1} \cdot \frac{9}{11} \\ z3s1 = 9 - 11 \cdot \frac{9}{11} = 0 \\ z3s2 = 3 - 13 \cdot \frac{9}{11} = -7\frac{7}{11} \\ z3s3 = 3 - 4 \cdot \frac{9}{11} = -\frac{3}{11} \\ z3s4 = 15 - 37 \cdot \frac{9}{11} = -15\frac{3}{11} \end{array} \quad \begin{array}{l} x & y & z \\ \hline 11 & 13 & 4 & 37 \\ 0 & -\frac{2}{11} & \frac{7}{11} & -\frac{4}{11} \\ 0 & -7\frac{7}{11} & -\frac{3}{11} & -15\frac{3}{11} \\ \end{array}$$

$$\begin{aligned} & \text{Zeile3} = \text{Zeile3} - \text{Zeile2} \cdot \frac{-7\frac{7}{11}}{-\frac{2}{11}} \\ & z 3 s 2 = -7\frac{7}{11} - \left(-\frac{2}{11}\right) \cdot \frac{-7\frac{7}{11}}{-\frac{2}{11}} = 0 & \frac{x \quad y \quad z}{11 \quad 0 \quad 49\frac{1}{2}} \quad 11 \\ & z 3 s 3 = -\frac{3}{11} - \frac{7}{11} \cdot \frac{-7\frac{7}{11}}{-\frac{2}{11}} = -27 & 0 \quad 0 \quad -27 \quad 0 \\ & z 3 s 4 = -15\frac{3}{11} - \left(-\frac{4}{11}\right) \cdot \frac{-7\frac{7}{11}}{-\frac{2}{11}} = 0 \end{aligned}$$

$$\begin{split} & \text{Zeile1} = \text{Zeile1} - \text{Zeile3} \cdot \frac{49\frac{1}{2}}{-27} & x & y & z \\ & z1s3 = 49\frac{1}{2} - (-27) \cdot \frac{49\frac{1}{2}}{-27} = 0 & 0 & -\frac{2}{11} & \frac{7}{11} & -\frac{4}{11} \\ z1s4 = 11 - 0 \cdot \frac{49\frac{1}{2}}{-27} = 11 & 0 & 0 & -27 & 0 \end{split}$$

$$\begin{split} & \text{Zeile2} = \text{Zeile2} - \text{Zeile3} \cdot \frac{\frac{7}{11}}{-27} & \begin{array}{c|cccc} x & y & z \\ \hline & 11 & 0 & 0 & 11 \\ \hline & 22s3 = \frac{7}{11} - (-27) \cdot \frac{7}{11} = 0 & 0 & -\frac{2}{11} & 0 & -\frac{4}{11} \\ \hline & 22s4 = -\frac{4}{11} - 0 \cdot \frac{7}{1-27} = -\frac{4}{11} & 0 & 0 & -27 & 0 \\ \hline \end{array}$$

$$x = \frac{11}{11} = 1$$

$$y = \frac{-\frac{4}{11}}{-\frac{2}{11}} = 2$$

$$z = \frac{0}{-27} = 0$$

$$L = \{1/2/0\}$$

1.7 Finanzmathematik

1.7.1 Zinsrechnung - Jahreszins

 $z = \frac{K \cdot p \cdot t}{100}$

Anzahl der Jahre

K Kapital Euro

p Zinssatz %

z Zinsen Euro

$$p = \frac{z \cdot 100}{K \cdot t}$$
 $K = \frac{z \cdot 100}{p \cdot t}$ $t = \frac{z \cdot 10}{K \cdot p}$

Interaktive Inhalte:

$$z = \frac{K \cdot p \cdot t}{100}$$

$$p = \frac{z \cdot 100}{K \cdot t}$$

$$K = \frac{z \cdot 100}{p \cdot t}$$

$$t = \frac{z \cdot 100}{K \cdot p}$$

1.7.2 Zinsrechnung - Tageszins

 $z = \frac{K \cdot p \cdot t}{100 \cdot 360}$

t Anzahl der Tage

K Kapital Eu

p Zinssatz %

Zinsen Euro

 $p = \frac{z \cdot 100 \cdot 360}{K \cdot t}$ $K = \frac{z \cdot 100 \cdot 360}{p \cdot t}$ $t = \frac{z \cdot 100 \cdot 36}{p \cdot K}$

Interaktive Inhalte:

$$z = \frac{K \cdot p \cdot t}{100 \cdot 360}$$

$$p = \frac{z \cdot 100 \cdot 360}{K \cdot t}$$

$$K = \frac{z \cdot 100 \cdot 360}{p \cdot t}$$

$$t = \frac{z \cdot 100 \cdot 360}{p \cdot K}$$

1.7.3 Zinsrechnung - Monatszins

 $z = \frac{K \cdot p \cdot t}{100 \cdot 12}$

t Anzahl der Monate

K Kapital Euro

p Zinssatz %

z Zinsen Euro

$$p = \frac{z \cdot 100 \cdot 12}{K \cdot t}$$
 $K = \frac{z \cdot 100 \cdot 12}{p \cdot t}$ $t = \frac{z \cdot 100 \cdot 12}{p \cdot K}$

Interaktive Inhalte:

$$z = \frac{K \cdot p \cdot t}{100 \cdot 12} \qquad \boxed{p}$$

$$p = \frac{z \cdot 100 \cdot 12}{K \cdot t}$$

$$K = \frac{z \cdot 100 \cdot 12}{p \cdot t}$$

$$t = \frac{z \cdot 100 \cdot 12}{p \cdot K}$$

1.7.4 Zinsfaktor

 $q = 1 + \frac{p}{100}$

p Zinssatz

q Zinsfaktor

 $p = (q - 1) \cdot 100$

p

Interaktive Inhalte:

$$q = 1 + \frac{p}{100}$$
 $p = (q - 1) \cdot 100$

1.7.5 Zinseszinsformel

 $K_t = K_0 \cdot (1 + \frac{p}{100})^t$

t Anzahl der Jahre

Zinssatz

 K_0 Anfangskapital Euro

 K_t Kapital nach t Jahren Euro

 $K_0 = \frac{K_t}{(1 + \frac{p}{100})^t}$ $p = (t\sqrt{\frac{K_t}{K_0}} - 1) \cdot 100$ $t = \frac{\ln(K_t) - \ln(K_0)}{\ln(1 + \frac{p}{100})}$

Interaktive Inhalte:

$$K_t = K_0 \cdot (1 + \frac{p}{100})^t$$

$$K_0 = \frac{K_t}{(1 + \frac{p}{100})^t}$$

$$p = \left({}^t\sqrt{\frac{K_t}{K_0}} - 1\right) \cdot 100$$

$$t = \frac{\ln(K_t) - \ln(K_0)}{\ln(1 + \frac{p}{100})}$$

1.7.6 Degressive Abschreibung

$$B_t = B_0 \cdot (1 - \frac{p}{100})^t$$

Anzahl der Jahre

Abschreibungssatz % p

 B_0 Anschaffungswert Euro

Buchwert

$$B_0 = \frac{B_t}{(1 - \frac{p}{100})^t} \qquad t = \frac{\ln(B_t) - \ln(B_0)}{\ln(1 - \frac{p}{100})} \qquad p = (1 - t\sqrt{\frac{B_t}{B_0}}) \cdot 100$$

Interaktive Inhalte:

$$B_t = B_0 \cdot (1 - \frac{p}{100})^t$$

$$B_0 = \frac{B_t}{(1 - \frac{p}{100})^t}$$

$$t = \frac{\ln(B_t) - \ln(B_0)}{\ln(1 - \frac{p}{100})}$$

$$p = \left(1 - \frac{t}{\sqrt{\frac{B_t}{B_0}}}\right) \cdot 100$$

1.7.7 Rentenrechnung

Vorschüssiger Rentenendwert

$$R_n = r \cdot q \cdot \frac{q^n - 1}{q - 1}$$

q - Zinsfaktor

r - Rente

n - Anzahl der Jahre

 R_n - Rentenendwert

$$R_n - \text{Rentenendwert}$$

$$r = \frac{R_n \cdot (q-1)}{q \cdot (q^n - 1)}$$

$$n = \frac{\ln\left[\frac{R_n \cdot (q-1)}{r \cdot q} + 1\right]}{\ln q}$$

Nachschüssiger Rentenendwert

$$R_n = r \cdot \frac{q^n - 1}{q - 1}$$

q - Zinsfaktor

r - Rente

n - Anzahl der Jahre

 R_n - Rentenendwert

 $r = rac{R_n \cdot (q-1)}{q^n-1}$ $R_n \cdot (q-1) = rac{ln[rac{r}{ln \cdot q} + 1]}{ln \cdot q}$

Vorschüssiger Rentenendwert mit Startkapital

Kapitalmehrung:

$$R_n = K_0 \cdot q^n + r \cdot q \cdot \frac{q^n - 1}{q - 1}$$

Kapitalminderung:

$$R_n = K_0 \cdot q^n - r \cdot q \cdot \frac{q^n - 1}{q - 1}$$

q - Zinsfaktor

r - Rente

 K_0 - Startkapital

n - Anzahl der Jahre

 R_n - Rentenendwert

Nachschüssiger Rentenendwert mit Startkapital

Kapitalmehrung:

$$R_n = K_0 \cdot q^n + r \cdot \frac{q^n - 1}{q - 1}$$

Kapitalminderung

$$R_n = K_0 \cdot q^n - r \cdot \frac{q^n - 1}{q - 1}$$

q - Zinsfaktor

r - Rente

 K_0 - Startkapital

n - Anzahl der Jahre

 R_n - Rentenendwert

Rentenendwert - Rentenbarwert

$$R_0 = \frac{R_n}{q^n}$$

 \boldsymbol{q} - Zinsfaktor

 \boldsymbol{n} - Anzahl der Jahre

 R_0 - Rentenbarwert

 R_n - Rentenendwert

$$R_n = R_0 \cdot q^n$$

$$R = \frac{\ln \frac{R_n}{R_0}}{\ln q} = \frac{\ln R_n - \ln R_0}{\ln q}$$

$$R_n = r \cdot q \cdot \frac{q^n - 1}{q - 1}$$
 $R_n = r \cdot \frac{q^n - 1}{q - 1}$

$$r = \frac{R_n \cdot (q-1)}{q \cdot (q^n-1)}$$
 $r = \frac{R_n \cdot (q-1)}{q^n-1}$

$$n = \frac{ln\left[\frac{R_n + (q-1)}{r + q} + 1\right]}{ln \cdot q} \quad n = \frac{ln\left[\frac{R_n + (q-1)}{r}\right]}{ln \cdot q}$$


2 Geometrie

2.1 Grundlagen

2.1.1 Definitionen

Strecke [AB]

Gerade Linie die durch 2 Endpunkte begrenzt wird.

Länge einer Strecke \overline{AB}

Entfernung zwischen den Punkten A und B.

$$\overline{AB} = 3cm$$

Gerade AB

Unbegrenzte gerade Linie durch 2 Punkte.

Halbgerade - Strahl [AB]

Einseitig begrenzte gerade Linie.

Winkel

Zwei von einem Punkt (Scheitel) ausgehenden Halbgeraden (Schenkel) schließen einen Winkel ein.

$$\alpha = \angle ABC$$

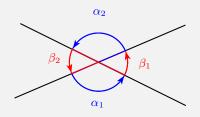
Drehsinn entgegen des Uhrzeigersinns = positiver Winkel


Drehsinn im Uhrzeigersinn = negativer Winkel

spitzer Winkel: $0^{\circ} < \alpha < 90^{\circ}$ rechter Winkel: $\alpha = 90^{\circ}$

stumpfer Winkel: $90^{\circ} < \alpha < 180^{\circ}$ gestreckter Winkel: $\alpha = 180^{\circ}$

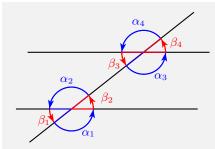
überstumpfer Winkel: $180^{\circ} < \alpha < 360^{\circ}$


Vollwinkel: $\alpha = 360^{\circ}$

B Scheitelpunkt $[BA,[BC \text{ Schenkel} \\ \alpha = \measuredangle ABC \qquad \beta = \measuredangle CBA$

Winkel an sich schneidenden Geraden

Scheitelwinkel (Gegenwinkel) sind gleich groß. Nebenwinkel ergänzen sich zu 180°.

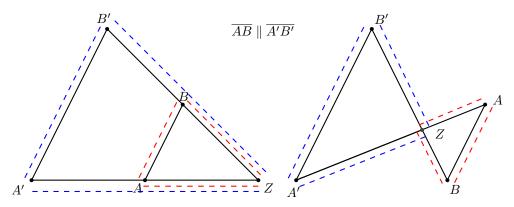

Scheitelwinkel: $\alpha_1 = \alpha_2; \beta_1 = \beta_2$

Nebenwinkel: $\alpha_1 + \beta_1 = 180^{\circ}; \alpha_2 + \beta_2 = 180^{\circ}$

Geometrie Grundlagen

Winkel an parallelen Geraden

Stufenwinkel (F-Winkel) und Wechselwinkel (Z-Winkel) sind gleich groß. Nachbarwinkel (E-Winkel) ergänzen sich zu $180^{\circ}.$


$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4$$

$$\beta_1 = \beta_2 = \beta_3 = \beta_4$$

 $\alpha+\beta=180^\circ$

Stufenwinkel: $\alpha_1 = \alpha_3$; $\beta_1 = \beta_3$ Wechselwinkel: $\alpha_2 = \alpha_3$; $\beta_2 = \beta_3$

Nachbarwinkel: $\alpha_3 + \beta_2 = 180^\circ$; $\alpha_2 + \beta_3 = 180^\circ$

2.1.2 Strahlensatz (Vierstreckensatz)

$$\overline{AB} \parallel \overline{A'B'} \Leftrightarrow$$

$$\frac{\overline{ZA'}}{\overline{ZA}} = \frac{\overline{ZB'}}{\overline{ZB}} = \frac{\overline{A'B'}}{\overline{AB}}$$

$$\frac{\overline{ZA}}{\overline{AA'}} = \frac{\overline{ZB}}{\overline{BB'}}$$

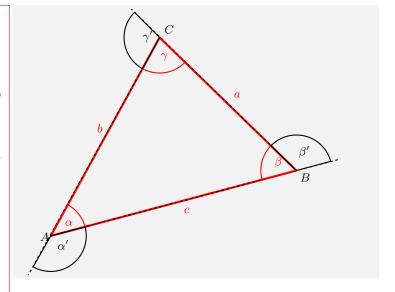
2.2 Dreieck

2.2.1 Eigenschaften des Dreiecks

Winkel- und Seitenbeziehungen

- Innenwinkelsumme: $\alpha + \beta + \gamma = 180^{\circ}$
- Außenwinkelsumme: $\alpha' + \beta' + \gamma' = 360^{\circ}$
- $\gamma' = \alpha + \beta$; $\beta' = \alpha + \gamma$; $\alpha' = \beta + \gamma$;
- Dreiecksungleichung:

Die Summe zweier Dreiecksseiten ist größer als die dritte Seite.


$$a+b>c$$
 $a+c>b$ $b+c>a$

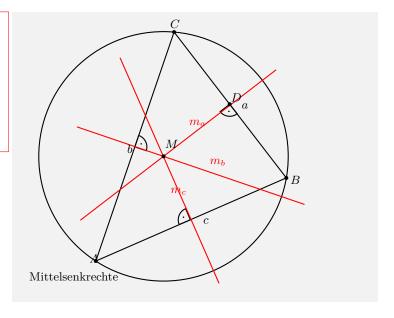
• Der längeren von zwei Seiten liegt der größere Winkel gegenüber.

$$\begin{array}{ll} a>b\Rightarrow\alpha>\beta & \quad ac\Rightarrow\alpha>\gamma & \quad a< c\Rightarrow\alpha<\gamma\\ b>c\Rightarrow\beta>\gamma & \quad b< c\Rightarrow\beta<\gamma \end{array}$$

• Gleichlangen Seiten liegen gleiche Winkel gegenüber.

$$a = b \Rightarrow \alpha = \beta$$
$$a = c \Rightarrow \alpha = \gamma$$
$$b = c \Rightarrow \beta = \gamma$$

Interaktive Inhalte:


hier klicken

2.2.2 Besondere Linien im Dreieck

Mittelsenkrechte

Alle Punkte auf einer Mittelsenkrechte haben von zwei Eckpunkten die gleiche Entfernung. Die Mittelsenkrechten schneiden sich im Umkreismittelpunkt. Der Umkreismittelpunkt hat von den drei Eckpunkten des Dreiecks die gleiche Entfernung.

Umkreisradius:
$$r_u = \frac{a}{2 \cdot \sin \alpha} = \frac{b}{2 \cdot \sin \beta} = \frac{c}{2 \cdot \sin \gamma}$$

Höhe

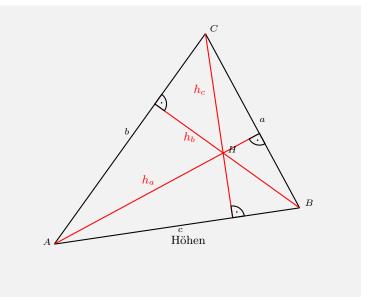
Das Lot von einem Eckpunkt des Dreiecks auf die gegenüberliegende Dreiecksseite. Höhen schneiden sich im Höhenschnittpunkt.

Höhen berechnen:

$$h_a = c \cdot \sin \beta$$

$$h_b = a \cdot \sin \gamma$$

$$h_c = b \cdot \sin \alpha$$


Fläche des Dreicks:

$$A = \frac{1}{2} \cdot a \cdot h_a$$

$$A = \frac{1}{2} \cdot b \cdot h_b$$

$$A = \frac{1}{2} \cdot c \cdot h_c$$

$$A = \frac{1}{2} \cdot g \cdot h$$

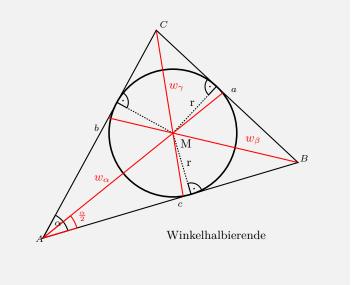
Winkelhalbierende

Alle Punkte auf einer Winkelhalbierenden haben zu den Schenkeln den gleichen Abstand. Die Winkelhalbierenden schneiden sich im Inkreismittelpunkt. Der Inkreismittelpunkt hat von den drei Seiten des Dreiecks den gleichen Abstand.

$$\rho = r_i = \frac{2 \cdot A}{U} = \frac{2 \cdot A}{a + b + c}$$

$$\delta_1 = 180^\circ - \beta - \frac{\alpha}{2}$$
 $w_\alpha = \frac{c \cdot \sin \beta}{\sin \delta_1}$

Inkreisradius:

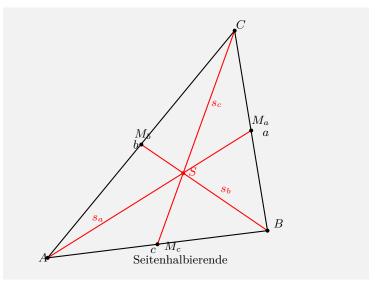

$$\rho = r_i = \frac{2 \cdot A}{U} = \frac{2 \cdot A}{a + b + c}$$

$$\delta_1 = 180^\circ - \beta - \frac{\alpha}{2} \qquad w_\alpha = \frac{c \cdot \sin \beta}{\sin \delta_1}$$

$$\delta_2 = 180^\circ - \frac{\beta}{2} - \gamma \qquad w_\beta = \frac{a \cdot \sin \gamma}{\sin \delta_2}$$

$$\delta_3 = 180^\circ - \alpha - \frac{\gamma}{2} \qquad w_\gamma = \frac{b \cdot \sin \alpha}{\sin \delta_3}$$

$$\delta_3 = 180^\circ - \alpha - \frac{\gamma}{2}$$
 $w_\gamma = \frac{b \cdot \sin \alpha}{\sin \delta_3}$


Seitenhalbierende

Strecke vom einem Eckpunkt des Dreiecks zum Mittelpunkt der gegenüberliegenden Seite. Die Seitenhalbierenden schneiden sich im Schwerpunkt. Der Schwerpunkt teilt die Seitenhalbierenden im Verhältnis 2:1.

$$s_a = \frac{1}{2}\sqrt{2(b^2 + c^2) - a^2}$$

$$s_b = \frac{1}{2}\sqrt{2(a^2 + c^2) - b^2}$$


$$s_c = \frac{1}{2}\sqrt{2(a^2 + b^2) - c^2}$$

Interaktive Inhalte:

hier klicken

2.2.3 Allgemeines Dreieck

Eigenschaften

• Innenwinkelsumme: 180°

$$\alpha + \beta + \gamma = 180^{\circ}$$

Fläche Grundline-Höhe

$$A = \frac{g \cdot h}{2}$$

$$\begin{array}{ccc} g & \text{Grundlinie} & m \\ h & \text{H\"ohe} & m \\ A & \text{Fl\"ache} & m^2 \\ g = \frac{A \cdot 2}{h} & h = \frac{A \cdot 2}{g} \end{array}$$

Fläche-Winkel

$$A = \frac{1}{2} \cdot a \cdot b \cdot \sin(\gamma)$$

 $\begin{array}{lll} b & \text{Länge der Seite} & m \\ a & \text{Länge der Seite} & m \\ \gamma & \text{Winkel Gamma} & ^{\circ} \\ A & \text{Fläche} & m^2 \end{array}$

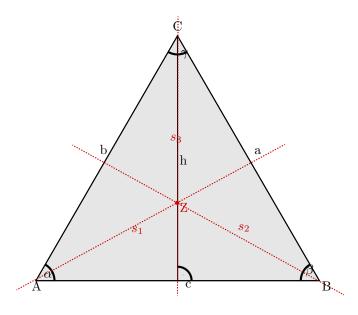
Umfang

$$U = a + b + c$$

 $\begin{array}{cccc} c & \text{Länge der Seite} & m \\ b & \text{Länge der Seite} & m \\ a & \text{Länge der Seite} & m \\ U & \text{Umfang} & m \end{array}$

<u>Interaktive Inhalte</u>:

$$A = \frac{g \cdot h}{2}$$


$$g = \frac{A \cdot 2}{h}$$

$$h = \frac{A \cdot 2}{a}$$

$$A = \frac{1}{2} \cdot a \cdot b \cdot \sin(\gamma)$$

$$U = a + b + c$$

2.2.4 Gleichseitiges Dreieck

Eigenschaften

- alle drei Seiten sind gleich lang
- \bullet Innenwinkel summe: 180°
- \bullet alle Winkel sind gleich groß: 60°
- \bullet drei Symmetrieachsen
- Besonderen Linien im Dreieck fallen zusammen

$$a = b = c$$

$$\alpha + \beta + \gamma = 180^{\circ}$$

$$\alpha = \beta = \gamma = 60^{\circ}$$

Symmetrieachsen: s_1, s_2, s_3

Flächeim gleichseitigen Dreieck

$$A = \frac{a^2}{4} \cdot \sqrt{3}$$

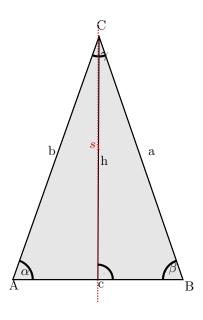
a Seite a m A Fläche m^2 $a = \sqrt{\frac{A \cdot 4}{\sqrt{3}}}$

Höhe im gleichseitigen Dreieck

$$h = \frac{a}{2} \cdot \sqrt{3}$$

h Höhe m a Grundlinie a m $a = \frac{h \cdot 2}{2}$

Interaktive Inhalte:

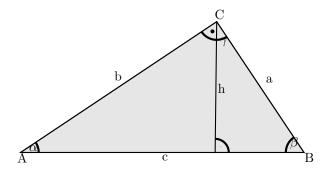

$$A = \frac{a^2}{4} \cdot \sqrt{3}$$

$$a = \sqrt{\frac{A \cdot 4}{\sqrt{3}}}$$

$$h = \frac{a}{2} \cdot \sqrt{3}$$

$$a = \frac{h \cdot 2}{\sqrt{3}}$$

2.2.5 Gleichschenkliges Dreieck



Eigenschaften

- zwei Seiten sind gleich lang (Schenkel)
- \bullet Innenwinkel summe: 180°
- zwei Winkel sind gleich groß (Basiswinkel)
- ullet eine Symmetrieachse

Schenkel: a=bBasis: cBasiswinkel: $\alpha=\beta$ $\alpha+\beta+\gamma=180^{\circ}$ $\gamma=180^{\circ}-2\cdot\alpha$ $\gamma=180^{\circ}-2\cdot\beta$ $\alpha=\frac{180^{\circ}-\gamma}{2}$ $\beta=\frac{180^{\circ}-\gamma}{2}$ Symmetrieachse: s_1

2.2.6 Rechtwinkliges Dreieck

Eigenschaften

• Innenwinkelsumme: 180°

 \bullet ein Winkel ist 90°

$$\begin{aligned} \alpha + \beta + \gamma &= 180^{\circ} \\ \gamma &= 90^{\circ} \end{aligned}$$

Fläche

$$A = \frac{a \cdot b}{2}$$

Ankathete zu α a

Gegenka
thete zu α AFläche m^2

$$a = \frac{A \cdot 2}{b}$$
 $b = \frac{A \cdot 2}{a}$

Phytagoras

$$a^2 + b^2 = c^2$$

Gegenkathete zu $\alpha-m$

Ankathete zu α b

Hypotenuse

 $c = \sqrt{a^2 + b^2}$ $a = \sqrt{c^2 - b^2}$ $b = \sqrt{c^2 - a^2}$

Höhensatz

$$h^2 = p \cdot q$$

 ${\bf Hypotenusenabschnitt} \quad m$

Hypotenusenabschnitt m

Höhe

 $h = \sqrt{p \cdot q}$ $q = \frac{h^2}{p}$

${\bf Kathetens atz}$

$$a^2 = c \cdot p \qquad b^2 = c \cdot q$$

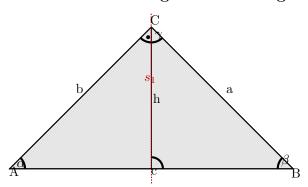
Hypotenusenabschnitt m

Hypotenuse

Gegenkathete zu α

 $a = \sqrt{c \cdot p}$ $c = \frac{a^2}{p}$ $p = \frac{a^2}{c}$

Interaktive Inhalte:


$$A = \frac{a \cdot b}{2}$$
 $a = \frac{A}{A}$

 $b = \frac{A \cdot 2}{a}$ $a^2 + b^2 = c^2$ $c = \sqrt{a^2 + b^2}$ $a = \sqrt{c^2 - b^2}$ $b = \sqrt{c^2 - a^2}$

 $h^2 = p \cdot q$

 $a^2 = c \cdot p \qquad b^2 = c \cdot q$

2.2.7 Gleichschenkliges rechtwinkliges Dreieck

Eigenschaften

• zwei Seiten sind gleich lang (Schenkel)

 \bullet Innenwinkel summe: 180°

 \bullet ein Winkel ist 90°

 \bullet Innenwinkel summe: 180°

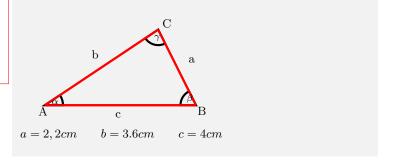
• zwei Winkel sind 45° (Basiswinkel)

ullet eine Symmetrieachse

Schenkel: a = b

Basis: c

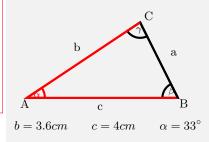
Innenwinkelsumme: 180° Basiswinkel: $\alpha = \beta = 45^{\circ}$ Symmetrieachse: s_1


Interaktive Inhalte:

2.2.8 Kongruenzsätze

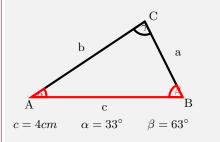
Seite - Seite - Seite (SSS)

Zwei Dreiecke sind kongruent, wenn sie in den drei Seiten übereinstimmen.


Seite	Seite	Seite	
a	b	c	

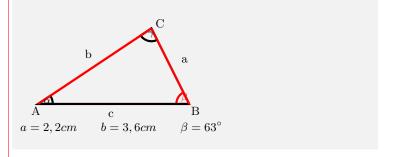
Seite - Winkel - Seite (SWS)

Zwei Dreiecke sind kongruent, wenn sie in zwei Seiten und dem eingeschlossenen Winkel übereinstimmen.


Seite	Winkel	Seite
a	β	c
a	γ	b
b	α	c

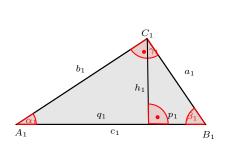
Winkel - Seite - Winkel (WSW, WWS)

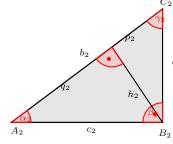
Zwei Dreiecke sind kongruent, wenn sie in zwei Winkeln und einer Seite übereinstimmen.

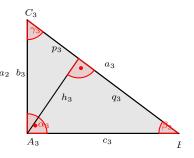

chief Solve distribution.								
Winkel	Seite	Winkel	Winkel	Winkel	Seite			
α	c	β	α	β	a			
α	b	γ	α	β	b			
β	a	γ	α	γ	a			
			α	γ	c			
			β	γ	b			
			β	γ	c			
	$\begin{array}{c} \text{Winkel} \\ \hline \alpha \\ \alpha \\ \end{array}$	$\begin{array}{c c} \text{Winkel} & \text{Seite} \\ \hline \alpha & c \\ \alpha & b \\ \hline \end{array}$	$\begin{array}{c ccc} Winkel & Seite & Winkel \\ \hline \alpha & c & \beta \\ \alpha & b & \gamma \\ \hline \end{array}$	$ \begin{array}{c cccc} Winkel & Seite & Winkel & Winkel \\ \hline \alpha & c & \beta & \alpha \\ \alpha & b & \gamma & \alpha \\ \beta & a & \gamma & \alpha \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Seite - Seite - Winkel (SsW)

Zwei Dreiecke sind kongruent, wenn sie in zwei Seiten und dem der längeren Seite gegenüber liegenden Winkel (Gegenwinkel) übereinstimmen.


Seite	Seite	Winkel	
a	b	α	a>b
a	b	β	b>a
a	c	α	a>c
a	c	γ	c>a
b	c	β	b>c
b	c	γ	c>b




Interaktive Inhalte:

hier klicken

2.2.9 Pythagoras - Höhensatz - Kathetensatz

Pythagoras

Die Katheten sind die am rechten Winkel anliegenden Seiten. Die Hypotenuse liegt dem rechten Winkel gegenüber. Die Summe der Kathetenquadrate ist gleich dem Hypotenusenquadrat.

$\triangle A_1 B_1 C_1$		
	Katheten a_1 und b_1	Hypotenuse c_1
$a_1^2 + b_1^2 = c_1^2$		
$c_1 = \sqrt{a_1^2 + }$	$b_1^2 \qquad a_1 = \sqrt{c_1^2 - b_1^2}$	$b_1 = \sqrt{c_1^2 - a_1^2}$
$\triangle A_2 B_2 C_2$		
$\beta_2 = 90^{\circ}$	Katheten a_2 und c_2	Hypotenuse b_2
$a_2^2 + c_2^2 = b_2^2$		
$b_2 = \sqrt{a_2^2 + }$	$c_2^2 \qquad a_2 = \sqrt{b_2^2 - c_2^2}$	$c_2 = \sqrt{b_2^2 - a_2^2}$
$\triangle A_3 B_3 C_3$		
$\alpha_3 = 90^{\circ}$	Katheten b_3 und c_3	Hypotenuse a_3
$a_3^2 + b_3^2 = c_3^2$		
$a_3 = \sqrt{b_3^2 + a_3^2}$	$c_3^2 \qquad b_3 = \sqrt{a_3^2 - c_3^2}$	$c_3 = \sqrt{a_3^2 - b_3^2}$

Kathetensatz

Die Höhe h teilt die Hypotenuse in zwei Hypotenusenabschnitte.

Die Kathete im Quadrat ist gleich dem Produkt aus dem zugehörigen Hypotenusenabschnitt und der Hypotenuse.

$$\gamma = 90^{\circ}$$
 $c = p + q$

Katheten a und b Hypotenuse c

Hypotenusenabschnitt p und q

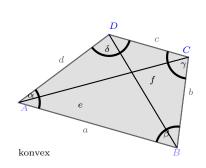
$$a^2 = c \cdot p \qquad b^2 = c \cdot q$$

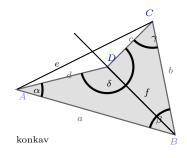
Höhensatz

Die Höhe h teilt die Hypotenuse in zwei Hypotenusenabschnitte.

Die Höhe im Quadrat ist gleich dem Produkt der Hypotenusenabschnitte.

$$\gamma = 90^{\circ}$$
 $c = p + q$

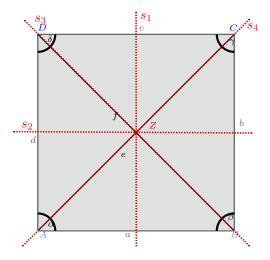

Hypotenusenabschnitte p und q


$$h^2 = p \cdot q$$

Geometrie Viereck

2.3 Viereck

2.3.1 Allgemeines Viereck



Allgemeines Viereck

- \bullet Innenwinkel summe: 360°
- Konvexes Viereck:
- Diagonalen schneiden sich innerhalb des Vierecks
- alle Winkel sind kleiner als 180°
- Konkaves Viereck:
- Diagonalen schneiden sich außerhalb des Vierecks
- ein Winkel ist größer als 180°

$$\begin{array}{l} \alpha+\beta+\gamma+\underline{\delta}=360^{\circ}\\ \text{Diagonale: } \overline{AC}=e \end{array} \ \overline{BD}=f \label{eq:delta}$$

2.3.2 Quadrat

Eigenschaften des Quadrats

 \bullet Innenwinkel summe: 360°

• alle Seiten sind gleich lang

• gegenüberliegende Seiten sind parallel

• alle Innenwinkel sind rechte Winkel

• Diagonalen sind gleich lang und halbieren einander

• Diagonalen sind senkrecht zueinander

 \bullet vier Symmetrieachsen

• Punktsymmetrisch

 $\begin{array}{l} \alpha+\beta+\gamma+\delta=360^{\circ}\\ a=b=c=d\\ a\|c-b\|d\\ \alpha=\beta=\gamma=\delta=90^{\circ}\\ \text{Diagonale: } d=e=f\\ e\perp f \end{array}$

Fläche des Quadrats

$$A = a^2$$

a Seite m A Fläche m^2 $a = \sqrt{A}$

Umfang des Quadrats

$$U = 4 \cdot a$$

 $\begin{array}{ll} a & {\rm Seite} & m \\ U & {\rm Umfang} & m \\ a = \frac{U}{4} \end{array}$

Diagonale des Quadrats

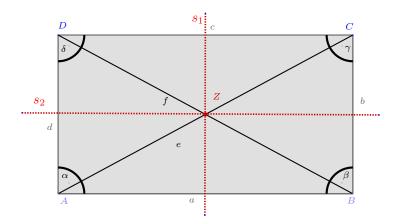
$$d = a \cdot \sqrt{2}$$

 $\begin{array}{ll} a & \text{Seite} & m \\ d & \text{Diagonale} & m \\ a = \frac{d}{\sqrt{2}} \end{array}$

Interaktive Inhalte:

$$A = a^2$$

$$a = \sqrt{A}$$


$$U = 4 \cdot a$$

$$a = \frac{U}{4}$$

$$d = a \cdot \sqrt{2}$$

$$a = \frac{d}{\sqrt{2}}$$

2.3.3 Rechteck

Eigenschaftgen des Rechtecks

- \bullet Innenwinkelsumme: 360°
- gegenüberliegende Seiten sind gleich lang
- gegenüberliegende Seiten sind parallel
- alle Innenwinkel sind rechte Winkel
- Diagonalen sind gleich lang und halbieren einander
- zwei Symmetrieachsen
- Punktsymmetrisch

 $\alpha + \beta + \gamma + \delta = 360^{\circ}$

a = c b = d

a||c b||d

 $\alpha=\beta=\gamma=\delta=90^\circ$

Diagonale: d = e = f

Symmetrieachsen: s_1, s_2

Punktsymmetrisch zu Z

Fläche des Rechtecks

$$A = a \cdot b$$

b Breite n

a Länge m

A Fläche m^2

 $a = \frac{A}{b}$ $b = \frac{A}{a}$

Umfang des Rechtecks

$$U = 2 \cdot a + 2 \cdot b$$

 $b \quad \ \, \text{Breite} \quad \ \, m$

a Länge m

U Umfang n

 $a = \frac{U-2 \cdot b}{2}$ $b = \frac{U-2 \cdot c}{2}$

Diagonalen des Rechtecks

$$d = \sqrt{a^2 + b^2}$$

b Breite

a Länge m

d Diagonale m

 $b = \sqrt{d^2 - a^2}$ $a = \sqrt{d^2 - b^2}$

Interaktive Inhalte:

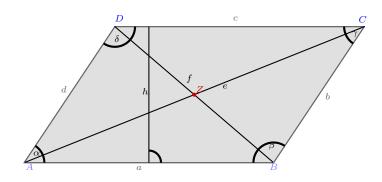
$$A = a \cdot b$$

$$a = \frac{A}{b}$$

$$b = \frac{A}{a}$$

$$U = 2 \cdot a + 2 \cdot b$$

$$a = \frac{U - 2 \cdot b}{2}$$


$$b = \frac{U - 2 \cdot a}{2}$$

$$d = \sqrt{a^2 + b^2}$$

$$b = \sqrt{d^2 - a^2}$$

$$a = \sqrt{d^2 - d^2}$$

2.3.4 Parallelogramm

Eigenschaften des Parallelogramms

 \bullet Innenwinkel summe: 360°

• gegenüberliegende Seiten sind gleich lang

• gegenüberliegende Seiten sind parallel

• gegenüberliegende Winkel sind gleich groß

 \bullet Nachbarwinkel ergeben zusammen 180°

• Diagonalen halbieren einander

 \bullet Punktsymmetrie

$$\begin{split} &\alpha+\beta+\gamma+\delta=360^{\circ}\\ &a=c\quad b=d\\ &a\|c\quad b\|d\\ &\alpha+\delta=180^{\circ}\quad \gamma+\beta=180^{\circ}\\ &\alpha=\gamma\quad \beta=\delta \end{split}$$

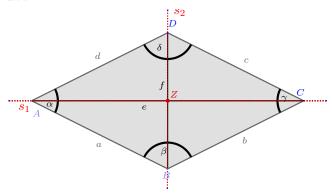
Punktsymmetrisch zu Z

Fläche des Parallelogramms

$$A = g \cdot h$$

 $\begin{array}{lll} h & \text{H\"ohe} & m \\ g & \text{Grundlinie} & m \\ A & \text{Fl\"ache} & m^2 \\ g = \frac{A}{h} & h = \frac{A}{a} \end{array}$

Umfang des Parallelogramms


$$U = 2 \cdot a + 2 \cdot b$$

 $\begin{array}{lll} b & \text{Breite} & m \\ a & \text{Länge} & m \\ U & \text{Umfang} & m \\ a = \frac{U-2 \cdot b}{2} & b = \frac{U-2 \cdot a}{2} \end{array}$

Interaktive Inhalte:

$$A = g \cdot h \qquad g = \frac{A}{h} \qquad h = \frac{A}{g}$$

2.3.5 Raute

Raute (Rhombus)

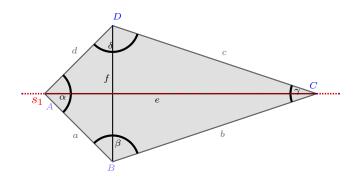
- \bullet Innenwinkelsumme: 360°
- alle Seiten sind gleich lang
- gegenüberliegende Seiten sind parallel
- gegenüberliegende Winkel sind gleich groß
- \bullet Nachbarwinkel ergeben zusammen 180°
- Diagonalen sind senkrecht zueinander
- Diagonalen halbieren einander
- zwei Symmetrieachsen
- Punktsymmetrisch

```
\begin{array}{l} \alpha+\beta+\gamma+\delta=360^{\circ}\\ a=c=b=d\\ a\|c-b\|d\\ \alpha+\delta=180^{\circ}\quad \gamma+\beta=180^{\circ}\\ \alpha=\gamma\quad \beta=\delta\\ \text{Symmetrieachsen: }s_{1},s_{2}\\ \text{Punktsymmetrisch zu Z} \end{array}
```

Fläche der Raute

$$A = \frac{1}{2} \cdot e \cdot f$$

$$f$$
 Diagonale f m
 e Diagonale e m
 A Fläche m^2
 $e = \frac{2 \cdot A}{f}$ $f = \frac{2 \cdot A}{e}$


Interaktive Inhalte:

$$A = \frac{1}{2} \cdot e \cdot f$$

$$e = \frac{2 \cdot A}{f}$$

$$f = \frac{2 \cdot A}{e}$$

2.3.6 Drachen

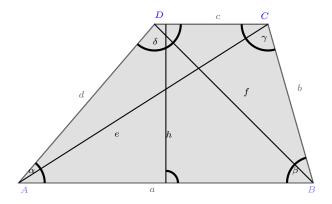
Fläche des Drachenvierecks

- Innenwinkelsumme: 360°
- \bullet zwei Paar benachbarter Seiten sind gleich lang
- zwei Winkel sind gleich
- eine Diagonale halbiert die andere
- ullet eine Symmetrieachse

$$\begin{array}{l} \alpha+\beta+\gamma+\delta=360^{\circ}\\ a=d\quad b=c\\ a\|c\quad b\|d\\ \beta=\delta\\ \text{Symmetrieachse: } s_1 \end{array}$$

Fläche der Raute

$$A = \frac{1}{2} \cdot e \cdot f$$


$$f$$
 Diagonale f m
 e Diagonale e m
 A Fläche m^2
 $e = \frac{2 \cdot A}{f}$ $f = \frac{2 \cdot A}{e}$

Viereck

Interaktive Inhalte:

$$A = \frac{1}{2} \cdot e \cdot f \qquad e = \frac{2 \cdot A}{f} \qquad f = \frac{2 \cdot A}{e}$$

2.3.7 Allgemeines Trapez

Eigenschaften des Allgemeinen Trapezes

- \bullet Innenwinkel summe: 360°
- zwei Seiten sind parallel
- \bullet Nachbarwinkel ergeben jeweils zusammen 180°

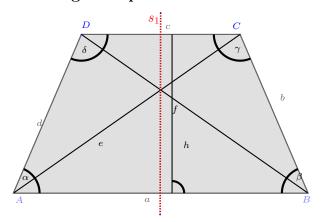
$$\begin{split} &\alpha+\beta+\gamma+\delta=360^\circ\\ &a\|c\\ &\alpha+\delta=180^\circ \quad \gamma+\beta=180^\circ \end{split}$$

Flächeninhalt Trapez

$$A = \frac{a+c}{2} \cdot h$$

 $\begin{array}{lll} c & \text{Grundlinie c} & m \\ a & \text{Grundlinie a} & m \\ h & \text{H\"ohe} & m \\ A & \text{Fl\"ache} & m^2 \\ a = \frac{2 \cdot A}{h} - c & c = \frac{2 \cdot A}{h} - a & h = \frac{2 \cdot A}{a+c} \end{array}$

Interaktive Inhalte:


$$A = \frac{a+c}{2} \cdot h$$

$$a = \frac{2 \cdot A}{h} - c$$

$$c = \frac{2 \cdot A}{h} - a$$

$$h = \frac{2 \cdot A}{a+c}$$

2.3.8 Gleichschenkliges Trapez

Eigenschaften Gleichschenkliges Trapez

 \bullet Innenwinkel summe: 360°

• zwei Seiten sind parallel

• zwei Seiten sind gleich lang

• je zwei Winkel sind gleich groß

 \bullet eine Symmetrieachse

• Diagonalen sind gleich lang

 \bullet eine Symmetrieachse

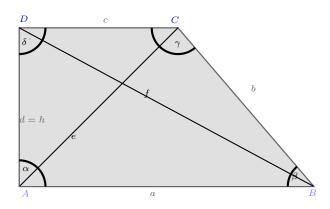
 $\begin{aligned} \alpha + \beta + \gamma + \delta &= 360^{\circ} \\ a\|c\end{aligned}$

d = b

 $\alpha + \delta = 180^{\circ}$ $\gamma + \beta = 180^{\circ}$

 $\alpha = \beta \quad \gamma = \delta$

Interaktive Inhalte:


$$A = \frac{a+c}{2} \cdot h$$

$$a = \frac{2 \cdot A}{b} - c$$

$$c = \frac{2 \cdot A}{b} - a$$

$$h = \frac{2 \cdot A}{a + c}$$

2.3.9 Rechtwinkliges Trapez

$$A = \frac{a+c}{2} \cdot h$$

c Grundlinie c m

a Grundlinie a m

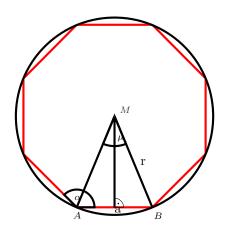
h Höhe m

A Fläche m

 $a = \frac{2 \cdot A}{h} - c$ $c = \frac{2 \cdot A}{h} - a$ $h = \frac{2 \cdot A}{a+c}$

$$A = \frac{a+c}{2} \cdot h$$

$$a = \frac{2 \cdot A}{1} - c$$

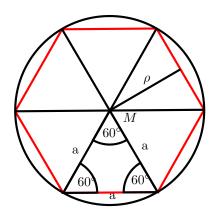

$$c = \frac{2 \cdot A}{h} - a$$

$$h = \frac{2 \cdot A}{a + c}$$

GeometriePolygone (n-Ecken)

Polygone (n-Ecken)

2.4.1Regelmäßiges n-Eck


Seitenlänge n-Eck: $a = 2 \cdot r \sin \frac{\mu}{2}$

Mittelpunktswinkel: $\mu = \frac{360^{\circ}}{n}$

Innenwinkel: $\alpha = 180^{\circ} - \mu$

Fläche: $A = n \cdot A_D = \frac{n}{2} \cdot r^2 \cdot \sin \mu$

2.4.2 Sechseck

Seitenlänge 6-Eck: a=rMittelpunktswinkel: $\mu=\frac{360^\circ}{6}=60^\circ$ Innenwinkel: $\alpha=180^\circ-60^\circ=120^\circ$

$$A = \frac{3 \cdot a^2}{2} \cdot \sqrt{3}$$

Grundlinie a

Fläche A

 $a = \sqrt{\frac{A \cdot 2}{3 \cdot \sqrt{3}}}$

Geometrie Polygone (n-Ecken)

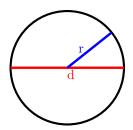
$$\rho = \frac{a}{2} \cdot \sqrt{3}$$

 ρ Inkreisradius m

a Grundlinie a m

$$a = \frac{\rho \cdot 2}{\sqrt{3}}$$

$$A = \frac{3 \cdot a^2}{2} \cdot \sqrt{3}$$


$$a = \sqrt{\frac{A \cdot 2}{3 \cdot \sqrt{3}}}$$

$$\rho = \frac{a}{2} \cdot \sqrt{3}$$

$$a = \frac{\rho \cdot 2}{\sqrt{3}}$$

2.5Kreis

2.5.1 Kreis

 $d=2\cdot r$

Radius mDurchmesser

 $A=r^2\cdot \pi$

Kreiszahl 3,1415927

m

Radius m

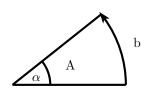
 m^2 Fläche

 $U=2\cdot r\cdot \pi$

Kreiszahl 3,1415927

Radius

Umfang m


Interaktive Inhalte:

 $d = 2 \cdot r$

 $U=2\cdot r\cdot \pi$

 $r = \frac{U}{2 \cdot \pi}$

Kreissektor (Grad)

 $A = \frac{r^2 \cdot \pi \cdot \alpha}{360}$

Winkel

Kreiszahl 3,1415927 π m

Radius Fläche

r

 m^2

 $\sqrt{\frac{A \cdot 360}{\alpha \cdot \pi}}$ $\alpha = \frac{A \cdot 360}{r^2 \cdot \pi}$

 $b = \frac{2 \cdot r \cdot \pi \cdot \alpha}{360}$

Kreiszahl π

3,1415927

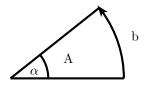
Radius m

Winkel

Kreisbogen m $r = \frac{b \cdot 360}{\alpha \cdot \pi \cdot 2}$ $\alpha = \frac{b \cdot 360}{r \cdot \pi \cdot 2}$

GeometrieKreis

$$A = \frac{r^2 \cdot \pi \cdot \alpha}{360}$$


$$r = \sqrt{\frac{A \cdot 360}{\alpha \cdot \pi}}$$

$$\alpha = \frac{A \cdot 360}{r^2 \cdot \pi} \qquad b = \frac{2 \cdot r \cdot \pi \cdot \alpha}{360}$$

$$r = \frac{b \cdot 360}{\alpha \cdot \pi \cdot 2}$$

$$\alpha = \frac{b \cdot 360}{r \cdot \pi \cdot 2}$$

Kreissektor (Bogenmaß)

$$A = \frac{r^2 \cdot x}{2}$$

Winkel x rad

Radius

Fläche

$$r = \sqrt{\frac{A \cdot 2}{x}}$$
 $x = \frac{A \cdot 2}{r^2}$

 $b = r \cdot x$

Radius Winkel x

 ${\bf Kreisbogen}$ m

Interaktive Inhalte:

$$A = \frac{r^2 \cdot x}{2}$$

$$r = \sqrt{\frac{A \cdot 2}{x}}$$


$$x = \frac{A \cdot 2}{r^2}$$

$$b = r \cdot x$$
 $r = \frac{b}{x}$

$$x = \frac{b}{r}$$

hier klicken

2.5.4 Kreisring

$$A = (r_a^2 - r_i^2) \cdot \pi$$

Kreiszahl

3,1415927

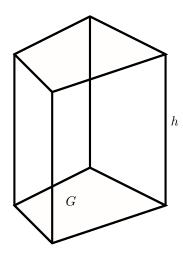
Radius (äußerer Kreis) m

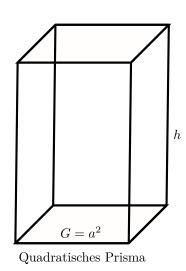
Radius (innerer Kreis) m

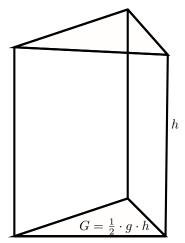
Fläche

 m^2

$$r_a = \sqrt{\frac{A}{\pi} + r_i^2}$$
 $r_i = \sqrt{r_a^2 - \frac{A}{\pi}}$


$$A = (r_a^2 - r_i^2) \cdot \pi$$


$$r_a = \sqrt{\frac{A}{\pi} + r_i^2}$$


$$r_a = \sqrt{\frac{A}{\pi} + r_i^2} \qquad r_i = \sqrt{r_a^2 - \frac{A}{\pi}}$$

2.6 Stereometrie

2.6.1 Prisma

Dreiseitiges Prisma

$$V = G \cdot h$$

h Körperhöhe m G Grundfläche m^2

V Volumen m^3

 $G = \frac{V}{h}$ $h = \frac{V}{G}$

 $O = 2 \cdot G + M$

M Mantelfläche m^2 G Grundfläche m^2

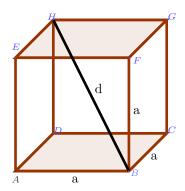
O Oberfläche m^2

 $G = \frac{O - M}{2} \qquad M = O - 2 \cdot G$

Interaktive Inhalte:

 $V = G \cdot h$

 $G = \frac{V}{h}$


 $h = \frac{V}{G}$

 $O = 2 \cdot G + M$

 $G = \frac{O-M}{2}$

 $M = O - 2 \cdot G$

2.6.2 Würfel

Geometrie Stereometrie

$$V = a^3$$

Seite V Volumen m^3

$$a = 3\sqrt{V}$$

$$O = 6 \cdot a^2$$

a Seite O Oberfläche m^2

$$a = \sqrt{\frac{O}{6}}$$

$$d = a \cdot \sqrt{3}$$

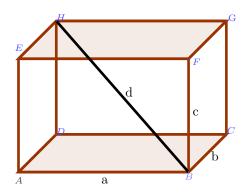
a Seite d Raumdiagonale m

$$a = \frac{d}{\sqrt{3}}$$

Interaktive Inhalte:

$$V = a^3$$

$$V = a^3$$
 $a = 3\sqrt{V}$


$$O = 6 \cdot a^2$$

$$a = \sqrt{\frac{O}{6}}$$

$$d = a \cdot \sqrt{3}$$

$$a = \frac{d}{\sqrt{3}}$$

2.6.3 Quader

$$V = a \cdot b \cdot c$$

c Höhe mb Breite

a Länge

V Volumen m^3

 $a = \frac{V}{b \cdot c}$ $b = \frac{V}{a \cdot c}$ $c = \frac{V}{b \cdot a}$

$$O = 2 \cdot (a \cdot b + a \cdot c + b \cdot c)$$

Höhe

Breite

Länge Oberfläche m^2

 $b = \frac{O - 2 \cdot a \cdot c}{2 \cdot (a + c)}$ $c = \frac{O - 2 \cdot b \cdot a}{2 \cdot (b + a)}$

$$d = \sqrt{a^2 + b^2 + c^2}$$

Höhe

Breite b

a Länge

d Raumdiagonale m

$a = \sqrt{d^2 - b^2 - c^2}$ $b = \sqrt{d^2 - a^2 - c^2}$ $c = \sqrt{d^2 - b^2 - a^2}$

$$V = a \cdot b \cdot c$$

$$a = \frac{V}{b \cdot c}$$

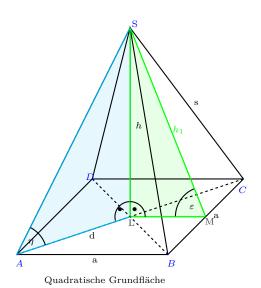
$$= \frac{V}{a \cdot c} \quad | \quad c = \frac{1}{a}$$

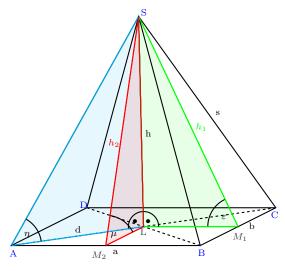
$$a = \frac{V}{b \cdot c} \qquad b = \frac{V}{a \cdot c} \qquad c = \frac{V}{b \cdot a} \qquad O = 2 \cdot (a \cdot b + a \cdot c + b \cdot c)$$

$$a = \frac{O - 2 \cdot b \cdot c}{2 \cdot (b + c)}$$

$$=\frac{O-2\cdot a\cdot c}{2\cdot (a+c)}$$
 $c=\frac{O-2\cdot a\cdot c}{2\cdot a\cdot c}$

$$d = \sqrt{a^2 + b^2 + c^2} \qquad a = \sqrt{d^2 - b^2 - c^2} \qquad b = \sqrt{d^2 - a^2 - c^2} \qquad c = \sqrt{d^2 - b^2 - a^2}$$


$$a = \sqrt{d^2 - b^2 - c^2}$$


$$b = \sqrt{d^2 - a^2 - c^2}$$

$$c = \sqrt{d^2 - b^2 - a^2}$$

Geometrie Stereometrie

2.6.4 Pyramide

Rechteckige Grundfläche

Volumen

 $V=\tfrac{1}{3}G\cdot h$

Körperhöhe h m Meter Grundfläche G m^2 Quadratmeter Volumen V m^3 Kubikmeter

Oberfläche

O = G + M

Grundfläche G m^2 Quadratmeter Mantelfläche M m^2 Quadratmeter Oberfläche O m^2 Quadratmeter G=O-M M=O-G

Geometrie Stereometrie

Quadratische Pyramide

Pythagoras im
$$\triangle ABC$$
 $d^2 = a^2 + a^2$ $d = a\sqrt{2}$
Pythagoras im $\triangle LMS$ $h_1^2 = \left(\frac{a}{2}\right)^2 + h^2$

Pythagoras im
$$\triangle ALS$$
 $s^2 = \left(\frac{d}{2}\right)^2 + h^2$

Mantelfläche
$$M=4\cdot \frac{1}{2}a\cdot h_1$$
 Grundfläche $G=a^2$

Oberfläche
$$O = G + M$$

Volumen
$$V = \frac{1}{3}G \cdot h$$
 $V = \frac{1}{3}a^2 \cdot h$

Oberfläche O=G+MVolumen $V=\frac{1}{3}G\cdot h$ $V=\frac{1}{3}a^2\cdot h$ Winkel zwischen der Seitenkante und der Grundfläche

$$\angle CAS$$
 $\tan \eta = \frac{h}{\frac{1}{2}d}$

Winkel zwischen der Seitenfläche $\triangle BCS$ und der Grundfläche

$$\angle SML \qquad \tan \epsilon = \frac{h}{\frac{1}{2}a}$$

Pythagoras im
$$\triangle ABC$$
 $d = \sqrt{a^2 + a^2}$ $d = \sqrt{(3m)^2 + (3m)^2} = 4,24m$

Pythagoras im $\triangle LM_1S$ $h_1 = \sqrt{\left(\frac{a}{2}\right)^2 + h^2}$ $h_1 = \sqrt{\left(\frac{3m}{2}\right)^2 + (5m)^2} = 5,22m$

Pythagoras im $\triangle ALS$ $s = \sqrt{\left(\frac{d}{2}\right)^2 + h^2}$ $s = \sqrt{\left(\frac{4,24m}{2}\right)^2 + (5m)^2} = 5,43m$

Mantelfläche $M = 4 \cdot \frac{1}{2}a \cdot h_1$
 $M = 4 \cdot \frac{1}{2}3m \cdot 5,22m = 31,3m^2$

Grundfläche $G = a^2$
 $G = (3m)^2 = 9m^2$

Oberfläche $O = G + M$
 $O = 9m^2 + 31,3m^2 = 40,3m^3$

Volumen $V = \frac{1}{3}a^2 \cdot h$
 $V = \frac{1}{3}(3m)^2 \cdot 5m = 15m^3$
 $\angle CAS$ $\tan \eta = \frac{h}{\frac{1}{2}d}$
 $\tan \eta = \frac{5m}{\frac{1}{2}4,24m}$
 $\eta = 67^\circ$
 $\angle SM_1L$ $\tan \epsilon = \frac{h}{\frac{1}{2}a}$
 $\tan \epsilon = \frac{5m}{\frac{1}{2}3m}$
 $\epsilon = 73,3^\circ$

Geometrie Stereometrie

Rechteckige Pyramide

Pythagoras im $\triangle ABC$ $d^2 = a^2 + b^2$

Pythagoras im $\triangle LM_1S$ $h_1^2 = \left(\frac{a}{2}\right)^2 + h^2$

Pythagoras im $\triangle LM_2S$ $h_2^2 = \left(\frac{b}{2}\right)^2 + h^2$ Pythagoras im $\triangle ALS$ $s^2 = \left(\frac{d}{2}\right)^2 + h^2$

Mantelfläche: $M=2\cdot\frac{1}{2}a\cdot h_2+2\cdot\frac{1}{2}b\cdot h_1$ Grundfläche: $G=a\cdot b$

Oberfläche: O=G+MVolumen: $V=\frac{1}{3}G\cdot h$ $V=\frac{1}{3}a\cdot b\cdot h$ Winkel zwischen der Seitenkante und der Grundfläche

 $\tan \eta = \frac{h}{\frac{1}{2}d}$

Winkel zwischen der Seitenfläche $\triangle BCS$ und der Grundfläche

 $\tan \epsilon = \frac{h}{\frac{1}{2}a}$ $\angle SM_1L$

Winkel zwischen der Seitenfläche $\triangle ABC$ und der Grundfläche

 $\angle SM_2L$ $\tan \mu = \frac{h}{\frac{1}{2}b}$ Pythagoras im $\triangle ABC$ $d = \sqrt{a^2 + b^2}$ $d = \sqrt{(3m)^2 + (4m)^2} = 5m$

Pythagoras im $\triangle LM_1S$ $h_1 = \sqrt{\left(\frac{a}{2}\right)^2 + h^2}$ $h_1 = \sqrt{\left(\frac{3m}{2}\right)^2 + (5m)^2} = 5,22m$

Pythagoras im $\triangle LM_2S$ $h_2 = \sqrt{\left(\frac{b}{2}\right)^2 + h^2}$

 $h_2 = \sqrt{\left(\frac{4m}{2}\right)^2 + (5m)^2} = 5,39m$

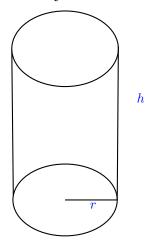
Pythagoras im $\triangle ALS$ $s = \sqrt{\left(\frac{d}{2}\right)^2 + h^2}$

 $s = \sqrt{\left(\frac{5m}{2}\right)^2 + (5m)^2} = 5,59m$

Mantelfläche: $M=2\cdot\frac{1}{2}a\cdot h_2+2\cdot\frac{1}{2}b\cdot h_1$ $M=2\cdot\frac{1}{2}3m\cdot 5,39m+2\cdot\frac{1}{2}4m\cdot 5,22m=37m^2$ Grundfläche: $G=a\cdot b$

 $G = 3m \cdot 4m = 12m^2$

Oberfläche: O = G + M $O = 12m^2 + 37m^2 = 49m^3$ Volumen: $V = \frac{1}{3}a \cdot b \cdot h$


Volumen: $V = \frac{1}{3}a \cdot b \cdot h$ $V = \frac{1}{3}3m \cdot 4m \cdot 5m = 20m^3$ $\angle CAS \qquad \tan \eta = \frac{h}{\frac{1}{2}d}$ $\tan \eta = \frac{5m}{\frac{1}{2}5m}$ $\eta = 63, 4^{\circ}$ $\angle SM_1L \qquad \tan \epsilon = \frac{h}{\frac{1}{2}a}$ $\tan \epsilon = \frac{5m}{\frac{1}{2}3m}$ $\epsilon = 73, 3^{\circ}$ $\angle SM_2L \qquad \tan \mu = \frac{h}{\frac{1}{2}b}$ $\tan \mu = \frac{5m}{\frac{1}{2}b}$

 $\tan \mu = \frac{5m}{\frac{1}{2}4m}$ $\mu = 68, 2^{\circ}$

Interaktive Inhalte:

 $h = \frac{3 \cdot V}{G}$ $V = \frac{1}{3}G \cdot h$ O = G + M $G = O - M \quad || \quad M = O - G$ Rechteckige Pyramide Quadratische

2.6.5 Kreiszylinder

$$V = r^2 \cdot \pi \cdot h$$

 $\begin{array}{ll} h & \text{K\"orperh\"ohe} & m \\ \pi & \text{Kreiszahl} & 3,1415927 \end{array}$

au Kreiszahl 3, 141592' Radius m

V Volumen m^3

$$r = \sqrt{\frac{V}{\pi \cdot h}}$$
 $h = \frac{V}{r^2 \cdot \pi}$

h Körperhöhe m

 π Kreiszahl 3, 1415927

r Radius m

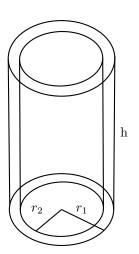
O Oberfläche m^2

 $r = 0, 5 \cdot \left(-h + \sqrt{h^2 + \frac{O}{\pi}}\right)$ $h = \frac{0 - 2 \cdot \pi \cdot r^2}{2 \cdot r \cdot \pi}$

Interaktive Inhalte:

 $O = 2 \cdot r \cdot \pi \cdot (r+h)$

$$V = r^2 \cdot \pi \cdot h$$


$$=\sqrt{rac{V}{\pi \cdot h}} \quad \bigg| \quad h = 1$$

$$O = 2 \cdot r \cdot \pi \cdot (r+h)$$

$$r = 0, 5 \cdot \left(-h + \sqrt{h^2 + \frac{O}{\pi}}\right)$$

$$h = \frac{0 - 2 \cdot \pi \cdot r^2}{2 \cdot r \cdot \pi}$$

2.6.6 Hohlzylinder

Geometrie Stereometrie

$$V = (r_1^2 - r_2^2) \cdot \pi \cdot h$$

hKörperhöhe mKreiszahl

3,1415927

Radius 2 r_2

Radius 1

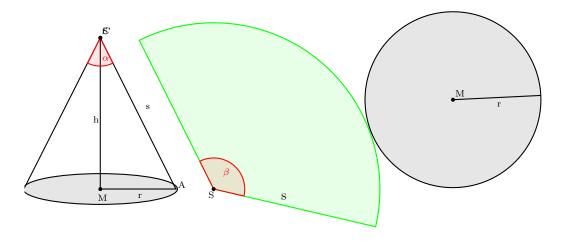
Volumen

$$v = \sqrt{V + n^2}$$

$$r_1 = \sqrt{\frac{V}{\pi \cdot h} + r_2^2}$$
 $r_2 = \sqrt{r_1^2 - \frac{V}{\pi \cdot h}}$ $h = \frac{V}{(r_1^2 - r_2^2) \cdot \pi}$

m

Interaktive Inhalte:


$$V = (r_1^2 - r_2^2) \cdot \pi \cdot h$$

$$r_1 = \sqrt{\frac{V}{\pi \cdot h} + r_2^2}$$

$$r_1 = \sqrt{\frac{V}{\pi \cdot h} + r_2^2}$$
 $r_2 = \sqrt{r_1^2 - \frac{V}{\pi \cdot h}}$

$$h = \frac{V}{(r_1^2 - r_2^2) \cdot \pi}$$

2.6.7 Kreiskegel

$$V = \frac{1}{3} \cdot r^2 \cdot \pi \cdot h$$

Höhe

 π

Kreiszahl

3, 1415927

Radius

Volumen m^3

$$r = \sqrt{\frac{3 \cdot V}{\pi \cdot h}}$$
 $h = \frac{3 \cdot V}{r^2 \cdot \pi}$

 $O = r \cdot \pi \cdot (r+s)$

Mantellinie m

Radius

Kreiszahl 3,1415927

Oberfläche m^2

$$s = \frac{O}{r \cdot \pi} - r \qquad r = \frac{-\pi \cdot s + \sqrt{(\pi \cdot s)^2 + 4 \cdot \pi \cdot O}}{2 \cdot \pi}$$

$$M = r \cdot \pi \cdot s$$

Mantellinie

Radius

Kreiszahl 3,1415927

Mantelfläche m^2

$$s = \underline{M}$$
 $r = \underline{M}$

$$s = \frac{M}{r \cdot \pi}$$
 $r = \frac{M}{s \cdot \pi}$

$$s = \sqrt{h^2 + r^2}$$

Mantellinie m

Radius m

Höhe

$$r = \sqrt{s^2 - h^2}$$
 $h = \sqrt{s^2 - r^2}$

Interaktive Inhalte:

$$V = \frac{1}{3} \cdot r^2 \cdot \pi \cdot h$$

$$r = \sqrt{\frac{3 \cdot V}{\pi \cdot h}}$$

$$h = \frac{3 \cdot V}{r^2 \cdot \pi}$$

$$O = r \cdot \pi \cdot (r+s)$$

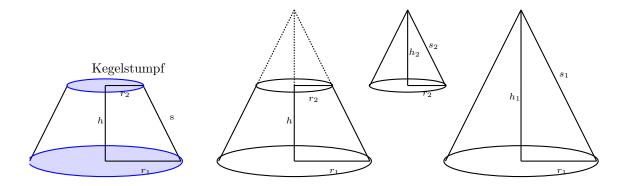
$$s = \frac{O}{r_{c}\pi} - \epsilon$$

$$\boxed{O = r \cdot \pi \cdot (r+s) \quad s = \frac{O}{r \cdot \pi} - r \quad r = \frac{-\pi \cdot s + \sqrt{(\pi \cdot s)^2 + 4 \cdot \pi \cdot O}}{2 \cdot \pi}}$$

 $M = r \cdot \pi \cdot s$

Geometrie Stereometrie

$$s = \frac{M}{r \cdot \pi}$$


$$r = \frac{M}{s \cdot \pi}$$

$$s = \sqrt{h^2 + r^2}$$

$$r = \sqrt{s^2 - h^2}$$

$$h = \sqrt{s^2 - r^2}$$

2.6.8 Kegelstumpf

Kegelstumpf

Strahlensatz	
$\frac{h_2}{h_2} = \frac{r_2}{r_2}$	$\frac{s_2}{-} = \frac{r_2}{-}$
$h_1 \stackrel{-}{-} r_1$	$s_1 - r_1$
$h_1 = h_2 + h$	$s_1 = s_2 + s$
$\frac{h_2}{-} = \frac{r_2}{}$	$\frac{s_2}{} = \frac{r_2}{}$
$h_2 + h$ r_1	$s_2 + s \qquad r_1$
$h_2 \cdot r_1 = r_2 \cdot (h_2 + h)$	$s_2 \cdot r_1 = r_2 \cdot (s_2 + s)$
$h_2 \cdot r_1 = r_2 \cdot h_2 + r_2 \cdot h$	$s_2 \cdot r_1 = r_2 \cdot s_2 + r_2 \cdot s$
$h_2 \cdot r_1 - r_2 \cdot h_2 = r_2 \cdot h$	$s_2 \cdot r_1 - r_2 \cdot s_2 = r_2 \cdot s$
$h_2 \cdot (r_1 - r_2) = r_2 \cdot h$	$s_2 \cdot (r_1 - r_2) = r_2 \cdot s$
$h_2 = \frac{r_2 \cdot h}{r_1 - r_2}$	$s_2 = \frac{r_2 \cdot s}{r_1 - r_2}$
$h_1 = h_2 + h$	$s_1 = s_2 + s$

Pythagoras:

$$s_2^2 = r_2^2 + h_2^2 \hspace{0.5cm} s_1^2 = r_1^2 + h_1^2$$

Mantelfläche:
$$M = r_1 \cdot \pi \cdot s_1 - r_2 \cdot \pi \cdot s_2$$

Grund- und Deckfläche:
$$G = r_1^2 \pi$$
 $D = r_2^2 \pi$

Oberfläche:
$$O = G + D + M$$

Oberfläche:
$$O = G + D + M$$

Volumen: $V = \frac{1}{3}r_1^2 \cdot \pi \cdot h_1 - \frac{1}{3}r_2^2 \cdot \pi \cdot h_2$

$$\begin{array}{l} h=5m\\ \pi=3,14\\ r_2=3m\\ r_1=4m\\ h_2=\frac{r_2\cdot h}{r_1-r_2}\\ h_2=\frac{3m\cdot 5m}{4m-3m}=15m\\ h_1=h_2+h\\ h_1=15m+5m\\ \text{Pythagoras:}\\ s_2=\sqrt{r_2^2+h_2^2}\quad s_1=\sqrt{r_1^2+h_1^2}\\ s_2=\sqrt{(3m)^2+(15m)^2}=15,3m\\ s_1=\sqrt{(4m)^2+(20m)^2}=20,4m\\ \text{Mantelfläche:}\quad M=r_1\cdot \pi\cdot s_1-r_2\cdot \pi\cdot s_2\\ M=4m\cdot \pi\cdot 20,4m-3m\cdot \pi\cdot 15,3m=112m^2\\ \text{Grund- und Deckfläche:}\quad G=r_1^2\pi\quad D=r_2^2\pi\\ G=(4m)^2\pi=50,3m^2\\ D=(3m)^2\pi=28,3m^2\\ \text{Oberfläche:}\quad O=G+D+M\\ O=50,3m^2+28,3m^2+112m^2=191m^2\\ \text{Volumen:}\quad V=\frac{1}{3}r_1^2\cdot \pi\cdot h_1-\frac{1}{3}r_2^2\cdot \pi\cdot h_2\\ V=\frac{1}{3}4m^2\cdot \pi\cdot 20m-\frac{1}{3}3m^2\cdot \pi\cdot 15m=194m^3\\ \end{array}$$

Interaktive Inhalte:

Kegelstumpf

Geometrie Stereometrie

2.6.9 Kugel

$$V = \frac{4}{3} \cdot r^3 \cdot \pi$$

 π Kreiszahl 3, 1415927

Radius m

V Volumen m^3

$$r = 3 \sqrt{\frac{V \cdot 3}{4 \cdot \pi}}$$

$$O = 4 \cdot r^2 \cdot \pi$$

Radius m

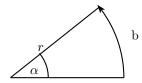
Kreiszahl 3, 1415927

Oberfläche m^2

$$r=\sqrt{\tfrac{O}{\pi\cdot 4}}$$

$$V = \frac{4}{3} \cdot r^3 \cdot \pi$$

$$r = 3 \sqrt{\frac{V \cdot 3}{4 \cdot \pi}}$$


$$O = 4 \cdot r^2 \cdot \pi$$

$$r = \sqrt{\frac{O}{\pi \cdot 4}}$$

Geometrie Trigonometrie

Trigonometrie 2.7

2.7.1 Gradmaß - Bogenmaß

$\alpha(^{\circ})$	0°	3	0°	45°	60°	90)°	120°	135°	150°	180°
$\alpha(rad)$	0	i	$\frac{1}{3}\pi$	$\frac{1}{4}\pi$	$\frac{1}{4}\pi$ $\frac{1}{3}\pi$		π	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π
	0	0, 5	5236	0,7854	1,0472	1, 5	708	2,0944	2,3562	2,618	3,1416
$\alpha(^{\circ})$	210)°	225°	240	° 270	2	300°	315°	330°	360°	
$\alpha(rad)$	$\frac{7}{6}$	τ	$\frac{5}{4}\pi$	$\frac{4}{3}\pi$	$\frac{3}{2}\pi$		$\frac{5}{3}\pi$	$\frac{7}{4}\pi$	$\frac{11}{6}\pi$	2π	
	3,66	552	3,92	$7 \mid 4, 18$	$88 \mid 4, \bar{7}1$	24	5,236	5,4978	5, 7596	6, 283	52

Definition Bogenmaß

Das Bogenmaß des Winkels x (RAD), ist die Länge des Kreisbogens b durch Radius r.

$$x = \frac{t}{r}$$

Beim Radius r=1 (Einheitskreis), ist das Bogenmaß des Winkels x (RAD) die Länge des Kreisbogens b.

$$x = b$$

Kreisbogen:b = 3cm Radius:r = 2cm

$$x = \frac{b}{r}$$

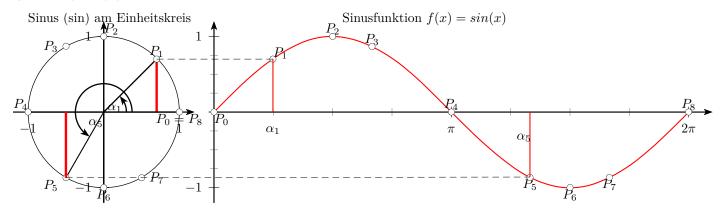
 $x = \frac{5}{r}$ $x = \frac{3cm}{2cm}$ x = 1,5rad

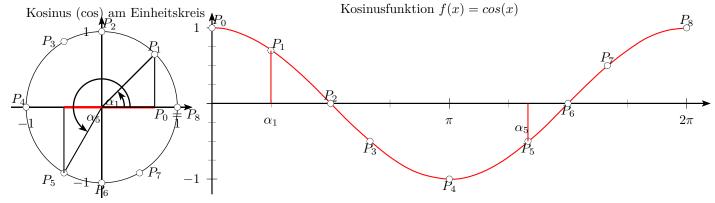
Umrechnung Gradmaß (DEG) - Bogenmaß (RAD)

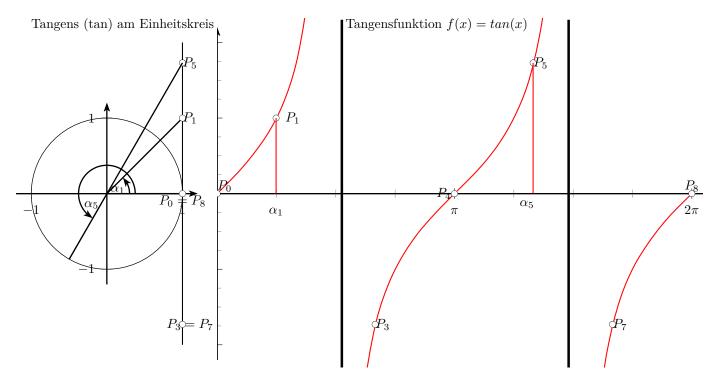
$$\alpha = \frac{180}{\pi} \cdot x$$

$$x = \frac{\pi}{180} \cdot \alpha$$
Kreiszahl π
 α in Gradmaß [°] (DEC

[°] (DEG) [rad] (RAD) x in Bogemaß


 $\begin{array}{l} \alpha = \frac{180}{\pi} \cdot x \\ \pi = 3,14 \end{array}$ x = 1,57rad $\alpha = \frac{180}{\pi} \cdot 1,57rad$ $\alpha = 90^{\circ}$ $\begin{array}{l} x = \frac{\pi}{180} \cdot \alpha \\ \pi = 3, 14 \end{array}$


 $\alpha = 90^{\circ}$ $x = \frac{3.14}{180} \cdot 90^{\circ}$ x = 1,57rad


$$\alpha = \frac{180}{\pi} \cdot x \quad | \quad x =$$

Geometrie Trigonometrie

2.7.2 Definition

	P_0		P_1		P_2	P_3			P_4				P_5	P_6	P_7		P_8
α	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
x	0°	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{7}{6}\pi$	$\frac{5}{4}\pi$	$\frac{4}{3}\pi$	$\frac{3}{2}\pi$	$\frac{5}{3}\pi$	$\frac{7}{4}\pi$	$\frac{11}{6}\pi$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	-1	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}$	0
$\cos \alpha$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	-1	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
$\tan \alpha$	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	$-\frac{1}{3}\sqrt{3}$	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	$-\frac{1}{3}\sqrt{3}$	0

Trigonometrie - Einheitskreis - Funktionen

• Punkt auf dem Einheitskreis:

 $P(\cos\alpha/\sin\alpha)$

• Trigonometrische Funktionen:

Sinusfunktion f(x) = sin(x)

Kosinusfunktion f(x) = cos(x)

Tangensfunktion f(x) = tan(x)

• Steigung :

$$tan(\alpha) = \frac{sin(\alpha)}{cos(\alpha)} = m$$

Punkt auf dem Einheitskreis:

$$\begin{array}{lll} P_1(\cos 45^\circ/\sin 45^\circ) & P_1(\cos \frac{1}{4}\pi/\sin \frac{1}{4}\pi) & P_1(\frac{1}{2}\sqrt{2}/\frac{1}{2}\sqrt{2}) \\ P_2(\cos 90^\circ/\sin 90^\circ) & P_2(\cos \frac{1}{2}\pi/\sin \frac{1}{2}\pi) & P_2(0/1) \\ P_5(\cos 240^\circ/\sin 240^\circ) & P_5(\cos \frac{4}{3}\pi^\circ/\sin \frac{4}{3}\pi) & P_5(-\frac{1}{2}/\frac{1}{2}\sqrt{3}) \end{array}$$

Trigonometrische Funktion:

$$f(\frac{1}{4}\pi) = \sin(\frac{1}{4}\pi) = \frac{1}{2}\sqrt{2}$$

$$f(\frac{1}{4}\pi) = \cos(\frac{1}{4}\pi) = \frac{1}{2}\sqrt{2}$$

$$f(\frac{1}{4}\pi) = \tan(\frac{1}{4}\pi) = 1$$

$$f(\frac{1}{4}\pi) = tan(\frac{1}{4}\pi) = 1$$

Komplementwinkel

$$sin(90^{\circ} - \alpha) = cos(\alpha)$$
$$cos(90^{\circ} - \alpha) = sin(\alpha)$$

$$sin(90^{\circ} - 30^{\circ}) = sin(60^{\circ}) = cos(30^{\circ})$$

 $cos(90^{\circ} - 30^{\circ}) = cos(60^{\circ}) = sin(30^{\circ})$

Negative Winkel

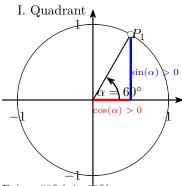
$$sin(-\alpha) = -sin(\alpha)$$

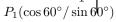
 $cos(-\alpha) = cos(\alpha)$

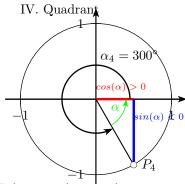
$$tan(-\alpha) = \frac{1}{tan(\alpha)}$$

$$sin(-30^\circ) = -sin(30^\circ)$$
$$cos(-30^\circ) = cos(30^\circ)$$
$$tan(-30^\circ) = \frac{1}{tan(30^\circ)}$$

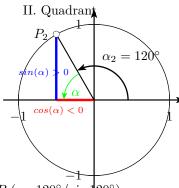
$$\sin \alpha - \cos \alpha - \tan \alpha$$

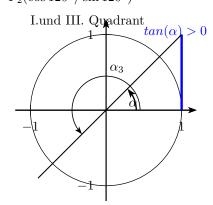

$$\sin \alpha = y \quad || \quad c$$

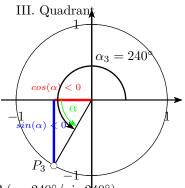

$$\cos \alpha = x$$


$$\tan \alpha = m$$

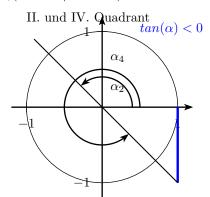
Geometrie Trigonometrie


2.7.3 Quadrantenregel





 $P_4(\cos 300^\circ/\sin 300^\circ)$



 $P_3(\cos 240^{\circ}/\sin 240^{\circ})$

	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$
I. Quadrant	+	+	+
II. Quadrant	+	-	-
III. Quadrant	-	-	+
IV. Quadrant	-	+	-

		DEG	RAD
1	I. Quadrant	α	X
1	II. Quadrant	$180^{\circ} - \alpha$	$\pi - x$
1	III. Quadrant	$180^{\circ} + \alpha$	$\pi + x$
	IV. Quadrant	$360^{\circ} - \alpha$	$2\pi - x$
_			

α in Gradmaß

```
I. Quadrant
                          0^{\circ} < \alpha < 90^{\circ}
 \sin(\alpha) > 0
                          \cos(\alpha) > 0
                                                   tan(\alpha) > 0
II. Quadrant
                            90^{\circ} < \alpha_2 < 180^{\circ}
 \sin(\alpha_2) > 0
                            \cos(\alpha_2) < 0
                                                      \tan(\alpha_2) < 0
 \alpha_2 = 180^{\circ} - \alpha
 sin(180^{\circ} - \alpha) = sin(\alpha)
 cos(180^{\circ} - \alpha) = -cos(\alpha)
 tan(180^{\circ} - \alpha) = -tan(\alpha)
III. Quadrant
                           180^{\circ} < \alpha_3 < 270^{\circ}
                                                      \tan(\alpha_3) > 0
                           \cos(\alpha_3) < 0
 \sin(\alpha_3) < 0
 \alpha_3 = 180^{\circ} + \alpha
 sin(180^{\circ} + \alpha) = -sin(\alpha)
 cos(180^{\circ} + \alpha) = -cos(\alpha)
 tan(180^{\circ} + \alpha) = tan(\alpha)
                              270^{\circ} < \alpha_4 < 360^{\circ}
IV. Quadrant
                           \cos(\alpha_4) > 0
                                                      \tan(\alpha_4) < 0
 \sin(\alpha_4) < 0
 \alpha_4 = 360^{\circ} - \alpha
 sin(360^{\circ} - \alpha) = -sin(\alpha)
 cos(360^{\circ} - \alpha) = cos(\alpha)
 tan(360^{\circ} - \alpha) = -tan(\alpha)
```

```
\begin{array}{l} \sin \alpha = \frac{1}{2} \\ \text{I Quadrant: } \alpha_1 = 30^\circ \\ \text{II Quadrant: } \alpha_2 = 180^\circ - 30^\circ = 150^\circ \\ \sin \alpha = -\frac{1}{2} \\ \text{III Quadrant: } \alpha_1 = 180^\circ + 30^\circ = 210^\circ \\ \text{IV Quadrant: } \alpha_2 = 360^\circ - 30^\circ = 330^\circ \\ \cos \alpha = \frac{1}{2}\sqrt{2} \\ \text{I Quadrant: } \alpha_1 = 45^\circ \\ \text{IV Quadrant: } \alpha_2 = 360^\circ - 45^\circ = 315^\circ \\ \cos \alpha = -\frac{1}{2}\sqrt{2} \\ \text{II Quadrant: } \alpha_1 = 180^\circ - 45^\circ = 135^\circ \\ \text{III Quadrant: } \alpha_1 = 180^\circ - 45^\circ = 225^\circ \\ \end{array}
```

x in Bogenmaß

I. Quadrant
$$0 < x < \frac{\pi}{2}$$

 $\sin(x) > 0$ $\cos(x) > 0$ $\tan(x) > 0$
II. Quadrant $\frac{\pi}{2} < x_2 < \pi$
 $\sin(x_2) > 0$ $\cos(x_2) < 0$ $\tan(x_2) < 0$
 $x_2 = \pi - x$
 $\sin(\pi - x) = \sin(x)$
 $\cos(\pi - x) = -\cos(x)$
 $\tan(\pi - x) = -\tan(x)$
III. Quadrant $\pi < x_3 < \frac{3\pi}{2}$
 $\sin(x_3) < 0$ $\cos(x_3) < 0$ $\tan(x_3) > 0$
 $x_3 = \pi + x$
 $\sin(\pi + x) = -\sin(x)$
 $\cos(\pi + x) = -\cos(x)$
 $\tan(\pi + x) = \tan(x)$
IV. Quadrant $\frac{3\pi}{2} < x_4 < 2\pi$
 $\sin(x_4) < 0$ $\cos(x_4) > 0$ $\tan(x_4) < 0$
 $x_4 = 2\pi - x$
 $\sin(2\pi - x) = -\sin(x)$
 $\cos(2\pi - x) = \cos(x)$
 $\tan(2\pi - x) = -\tan(x)$

```
\sin x = \frac{1}{2}
I Quadrant: x_1 = \frac{1}{6}\pi
II Quadrant: x_2 = \pi - \frac{1}{6}\pi = \frac{5}{6}\pi
\sin \alpha = -\frac{1}{2}
III Quadrant: x_1 = \pi + \frac{1}{6}\pi = \frac{7}{6}\pi
IV Quadrant: x_1 = 2\pi - \frac{1}{6}\pi = \frac{11}{6}\pi
\cos x = \frac{1}{2}\sqrt{2}
I Quadrant: x_1 = \frac{1}{4}\pi
IV Quadrant: x_2 = 2\pi - \frac{1}{4}\pi = \frac{7}{4}\pi
\cos \alpha = -\frac{1}{2}\sqrt{2}
II Quadrant: x_1 = \pi - \frac{1}{4}\pi = \frac{1}{4}\pi
III Quadrant: x_2 = pi + \frac{1}{4}\pi = \frac{5}{4}\pi
```

Interaktive Inhalte:

 $\sin \alpha - \cos \alpha - \tan \alpha$ $\sin \alpha = y$ $\cos \alpha = x$ $\tan \alpha = m$

2.7.4 Umrechnungen

$\tan - \sin - \cos$

 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$ $\sin \alpha = \tan \alpha \cdot \cos \alpha$ $\cos \alpha = \frac{\sin \alpha}{\tan \alpha}$

 $\sin 60^{\circ} = \frac{1}{2}\sqrt{3}$ $\cos 60^{\circ} = \frac{1}{2}$ $\tan 60^{\circ} = \frac{\sin 60^{\circ}}{\cos 60^{\circ}}$ $\tan 60^{\circ} = \frac{\frac{1}{2}\sqrt{3}}{\frac{1}{2}}$ $\tan 60^{\circ} = \sqrt{3}$ $\tan 60^{\circ} = 1,73$

sin - cos

$$sin^{2}\alpha + cos^{2}\alpha = 1$$

$$sin\alpha = \sqrt{1 - cos^{2}\alpha}$$

$$cos\alpha = \sqrt{1 - sin^{2}\alpha}$$

 $\begin{array}{l} \cos 30^{\circ} = \frac{1}{2}\sqrt{3} \\ \sin 30^{\circ} = \sqrt{1 - \cos^{2} 30^{\circ}} \\ \sin 30^{\circ} = \sqrt{1 - (\frac{1}{2}\sqrt{3})^{2}} \\ \sin 30^{\circ} = \sqrt{\frac{1}{4}} \\ \sin \alpha = \frac{1}{2} \end{array}$

Additionstheoreme

$$sin(\alpha + \beta) = sin\alpha \cdot cos\beta + cos\alpha \cdot sin\beta$$

$$sin(\alpha - \beta) = sin\alpha \cdot cos\beta - cos\alpha \cdot sin\beta$$

$$cos(\alpha + \beta) = cos\alpha \cdot cos\beta - sin\alpha \cdot sin\beta$$

$$cos(\alpha - \beta) = cos\alpha \cdot cos\beta + sin\alpha \cdot sin\beta$$

$$tan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha \cdot tan\beta}$$

$$tan(\alpha - \beta) = \frac{tan\alpha - tan\beta}{1 + tan\alpha \cdot tan\beta}$$

$$sin2\alpha = 2 \cdot sin\alpha \cdot cos\alpha$$

$$cos2\alpha = 2 \cdot cos^2\alpha - 1 = cos^2\alpha - sin^2\alpha$$

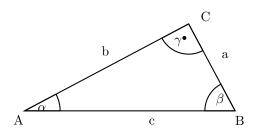
$$tan2\alpha = \frac{2 \cdot tan\alpha}{1 - tan^2\alpha}$$

 $sin(\alpha + 30^{\circ}) = sin\alpha \cdot cos30^{\circ} + cos\alpha \cdot sin30^{\circ}$ $sin(\alpha + 30^{\circ}) = \frac{1}{2}\sqrt{3}\sin\alpha + \frac{1}{2}\cos\alpha$

Interaktive Inhalte:

$$\sin^2\alpha + \cos^2\alpha = 1$$

 $sin\alpha = \sqrt{1-cos^2\alpha}$


 $\cos\alpha = \sqrt{1 - \sin^2\alpha}$

 $tan\alpha = \frac{sin\alpha}{cos\alpha}$

 $sin\alpha = tan\alpha \cdot cos\alpha$

 $cos\alpha = \frac{sin\alpha}{tan\alpha}$

2.7.5 Rechtwinkliges Dreieck

 $sin\alpha = \frac{a}{c}$ $sin\alpha = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$

 $\begin{array}{lll} c & \text{Hypotenuse} & m \\ a & \text{Gegenkathete zu } \alpha & m \\ \alpha & \text{Winkel} & \circ \\ \\ a = sin\alpha \cdot c & c = \frac{a}{sin\alpha} \end{array}$

$$cos\alpha = \frac{b}{c}$$
 $cos\alpha = \frac{\text{Ankathete}}{\text{Hypotenuse}}$

c Hypotenuse m

b — Ankathete zu α — m

 α Winkel

$$tan\alpha = \frac{a}{b}$$
 $tan\alpha = \frac{\text{Gegenkathete}}{\text{Ankathete}}$

 $b = cos\alpha \cdot c \hspace{0.5cm} c = \tfrac{b}{cos\alpha}$

Ankathete zu α m

 $\begin{array}{ccc} a & \text{Gegenkathete zu } \alpha & m \\ \alpha & \text{Winkel} & & {}^{\circ} \end{array}$

. . . .

 $a = tan\alpha \cdot b$ $b = \frac{a}{tan\alpha}$

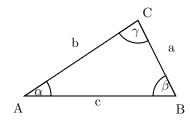
Interaktive Inhalte:

$$a = sin\alpha \cdot c$$

$$c = \frac{a}{\sin \alpha}$$

$$cos\alpha = \frac{b}{c}$$

$$b = cos\alpha \cdot c$$


$$c = \frac{b}{\cos \alpha}$$

$$tan\alpha = \frac{a}{b}$$

$$a = tan\alpha \cdot b$$

$$b = \frac{a}{tan\alpha}$$

2.7.6 Sinussatz

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} / \cdot \sin \beta / \cdot \sin \alpha$$

$$a \cdot \sin \beta = b \cdot \sin \alpha / : b$$

$$\sin \alpha = \frac{a \cdot \sin \beta}{b}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} / \cdot \sin \alpha$$

$$a = \frac{b \cdot \sin \alpha}{\sin \beta}$$

$$a = \frac{b \cdot \sin \alpha}{\sin \beta}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$

$$\sin \alpha = \frac{a \cdot \sin \beta}{b} \quad \sin \alpha = \frac{a \cdot \sin \gamma}{c}$$

$$\sin \beta = \frac{b \cdot \sin \alpha}{a} \quad \sin \beta = \frac{b \cdot \sin \gamma}{c}$$

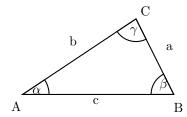
$$\sin \gamma = \frac{c \cdot \sin \alpha}{a} \quad \sin \gamma = \frac{c \cdot \sin \beta}{b}$$

$$a = \frac{b \cdot \sin \alpha}{\sin \beta} \quad a = \frac{c \cdot \sin \alpha}{\sin \gamma}$$

$$b = \frac{a \cdot \sin \beta}{\sin \alpha} \quad b = \frac{c \cdot \sin \beta}{\sin \gamma}$$

$$c = \frac{a \cdot \sin \gamma}{\sin \alpha} \quad c = \frac{b \cdot \sin \gamma}{\sin \beta}$$

Interaktive Inhalte:


 $\frac{\sigma}{\sin \beta} = \frac{\sigma}{\sin \gamma}$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

$$a = \frac{b \cdot \sin \alpha}{\sin \beta}$$

$$sin \alpha = \frac{a \cdot sin \beta}{b}$$

2.7.7 Kosinussatz

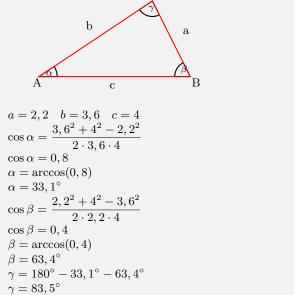
$$a = \sqrt{b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \alpha} \quad \cos \alpha = \frac{b^2 + c^2 - a^2}{2 \cdot b \cdot c}$$

$$b = \sqrt{a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos \beta} \quad \cos \beta = \frac{a^2 + c^2 - b^2}{2 \cdot a \cdot c}$$

$$c = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma} \quad \cos \gamma = \frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}$$

Interaktive Inhalte:

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \alpha$$


$$a = \sqrt{b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos\alpha}$$

$$cos\alpha = \frac{b^2 + c^2 - a^2}{2 \cdot b \cdot c}$$

2.7.8 Kongruenzsätze - Berechnungen am Dreieck

Seite - Seite (SSS)

Seite	Seite	Seite	
a	b	C	
1. Zwei	Winkel	mit Kosinussatz berechnen	
$a^2 = b^2$	$c^2 + c^2 - c^2$	$2 \cdot b \cdot c \cdot \cos \alpha$	
$a^2 = b^2$	$c^2 + c^2 - c^2$	$2 \cdot b \cdot c \cdot \cos \alpha \qquad / - a^2 \qquad / + 2 \cdot b \cdot c \cdot \cos \alpha$ $= b^2 + c^2 - a^2 \qquad / : (2 \cdot b \cdot c)$	
$2 \cdot b \cdot c$	$\cdot \cos \alpha$	$=b^2+c^2-a^2$ /: $(2\cdot b\cdot c)$	
COE O/ =	$= \frac{b^2 + c}{2 \cdot b}$	$a^{2}-a^{2}$	
cosα –	$2 \cdot i$	$\overline{)\cdot c}$	
$_{ m entspre}$			
$\cos \beta =$	$=\frac{a^2+a^2}{2}$	$\frac{a^2 - b^2}{a \cdot c}$ $\cos \gamma = \frac{a^2 + b^2 - c^2}{2 \cdot a \cdot b}$	
		inkel über die Winkelsumme im Dreieck berechnen	
$\alpha + \beta$	$+\gamma = 1$	80°	

Seite - Winkel - Seite (SWS)

Seite	Winkel	Seite
a	β	c
a	γ	b
b	α	c
. ~		1 0

1. Gegenüberliegende Seite mit Kosinussatz berechnen

$$a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos \beta$$
$$a = \sqrt{b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos \alpha}$$

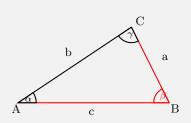
entsprechend

$$b = \sqrt{a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos \beta} \qquad c = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma}$$

2. Winkel mit Kosinussatz berechnen

$$a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos \alpha$$

$$a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos \alpha \qquad /-a^{2} \qquad /+2 \cdot b \cdot c \cdot \cos \alpha$$


$$2 \cdot b \cdot c \cdot \cos \alpha = b^{2} + c^{2} - a^{2} \qquad /:(2 \cdot b \cdot c)$$

$$\cos \alpha = \frac{b^{2} + c^{2} - a^{2}}{2 \cdot b \cdot c}$$

entsprechend

$$\cos\beta = \frac{a^2+c^2-b^2}{2\cdot a\cdot c} \qquad \cos\gamma = \frac{a^2+b^2-c^2}{2\cdot a\cdot b}$$
3. Fehlenden Winkel über die Winkelsumme im Dreieck berechnen

3. Fehlenden Winkel über die Winkelsumme im Dreieck berechnen $\alpha+\beta+\gamma=180^\circ$

$$a = 2, 2$$
 $c = 4$ $\beta = 63, 4^{\circ}$

$$b = \sqrt{2, 2^2 + 4^2 - 2 \cdot 2, 2 \cdot 4 \cdot \cos 63, 4^{\circ}}$$

$$b = 3, 6$$

$$\cos \alpha = \frac{3, 6^2 + 4^2 - 2, 2^2}{2 \cdot 3, 6 \cdot 4}$$

$$\cos \alpha = 0, 8$$

$$\alpha = \arccos(0, 8)$$

$$\alpha = 33.1^{\circ}$$

 $\alpha = 33, 1^{\circ}$ $\gamma = 180^{\circ} - 33, 1^{\circ} - 63, 4^{\circ}$ $\gamma = 83, 5^{\circ}$

Winkel - Seite - Winkel (WSW, WWS)

Winkel	Seite	Winkel	Winkel	Winkel	Seite
α	c	β	α	β	a
α	b	γ	α	β	b
β	a	γ	α	γ	a
			α	γ	c
			β	γ	b
			β	$\mid \gamma \mid$	c

- 1. Fehlenden Winkel über die Winkelsumme im Dreieck berechnen $\alpha+\beta+\gamma=180^{\circ}$
- 2. Eine Seite über den Sinussatz berechnen

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$

$$b = \frac{a \cdot \sin \beta}{\sin \alpha}$$
/ \cdot \sin \beta

entsprechend

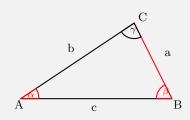
$$b = \frac{c \cdot \sin \beta}{\sin \gamma}$$

$$c = \frac{a \cdot \sin \gamma}{\sin \alpha}$$

$$c = \frac{b \cdot \sin \alpha}{\sin \beta}$$

$$c = \frac{b \cdot \sin \alpha}{\sin \gamma}$$

$$c = \frac{b \cdot \sin \gamma}{\sin \gamma}$$


3. Fehlende Seite mit dem Kosinussatz berechnen

$$a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos \beta$$

$$a = \sqrt{b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos \alpha}$$
entsprechend

$$b = \sqrt{a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos \beta}$$

$$c = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma}$$

$$\begin{array}{l} a=2,2 \quad \alpha=33,1^{\circ} \quad \beta=63,4^{\circ} \\ \gamma=180^{\circ}-\alpha-\beta \\ \gamma=180^{\circ}-33,1^{\circ}-63,4^{\circ} \\ \gamma=83,5^{\circ} \\ b=\frac{2,2\cdot\sin63,4}{\sin33,1} \\ b=3,6 \\ c=\sqrt{2,2^{2}+3,6^{2}-2\cdot2,2\cdot3,6\cdot\cos83,5^{\circ}} \\ c=4 \end{array}$$

Seite - Seite - Winkel (SsW)

Seite	Seite	Winkel	
a	b	α	a>b
a	b	β	b>a
a	c	α	a>c
a	c	γ	c>a
b	c	β	b>c
b	c	γ	c>b

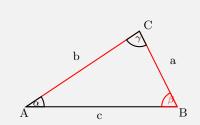
1. Winkel mit dem Sinussatz berechnen

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} / \sin \beta / \sin \alpha$$

$$a \cdot \sin \beta = b \cdot \sin \alpha / b$$

$$\sin \alpha = \frac{a \cdot \sin \beta}{b}$$
entsprechend
$$a \cdot b \cdot \sin \alpha + c \cdot \sin \alpha$$


$$c \cdot \sin \alpha$$

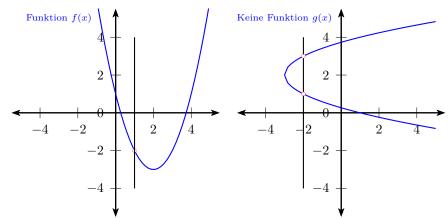
 $\sin\beta = \frac{b\cdot\sin\alpha}{a} \qquad \sin\gamma = \frac{c\cdot\sin\alpha}{a}$ 2. Fehlenden Winkel über die Winkelsumme im Dreieck berechnen $\alpha+\beta+\gamma = 180^\circ$

3. Fehlende Seite mit dem Kosinussatz berechnen

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \beta \qquad a = \sqrt{b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \alpha}$$
 entsprechend

$$b = \sqrt{a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos \beta} \qquad c = \sqrt{a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma}$$

$$\begin{split} a &= 2,2 \quad b = 3,6 \quad \beta = 63,4^{\circ} \\ \sin \alpha &= \frac{2,2 \cdot \sin 63,4^{\circ}}{3,6} \\ \sin \alpha &= 0,5 \\ \alpha &= \arcsin(0,5) \\ \alpha &= 33,1^{\circ} \\ \gamma &= 180^{\circ} - 33,1^{\circ} - 63,4^{\circ} \\ \gamma &= 83,5^{\circ} \\ c &= \sqrt{2,2^2 + 3,6^2 - 2 \cdot 2,2 \cdot 3,6 \cdot \cos 83,5^{\circ}} \\ c &= 4 \end{split}$$


Interaktive Inhalte:

hier klicken

3 Funktionen

3.1 Grundlagen

3.1.1 Definition

- Jedem Element x aus der Definitionsmenge D wird genau ein Element y aus der Wertemenge W zugeordnet.
- Jede Parallele zur y-Achse schneidet den Graphen der Funktion höchstens einmal.
- ullet x unabhängige Variable y abhängige Variable
- \bullet Zu jeder Funktion gehört ein Definitionsbereich. Fehlt die Angabe des Definitionsbereichs, gilt $\mathbb{D}=\mathbb{R}$

Ein Tafel Schokolade kostet $2 \in$. Wieviel kosten 1, 2, 3, 4, 5 Tafeln ? x= Anzahl der Tafeln y= Preis

 $\mathbb{W} = \{1, 2, 3, 4, 3\}$ $\mathbb{W} = \{2, 4, 6, 8, 10\}$

Funktionsgleichung: $y = 2 \cdot x$

Schreibweise

y = f(x) - Funktionsgleichung, Funktion

f(x) - Funktionsterm

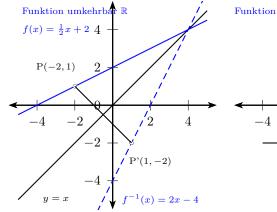
 $f: x \mapsto y$ x-Werte werden auf y-Werte abgebildet

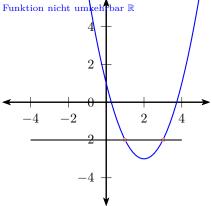
 $f: x \mapsto f(x)$ x-Werte werden auf f(x) abgebildet

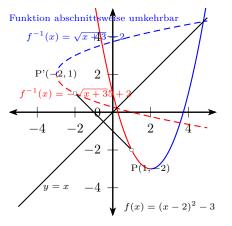
 $y = 2 \cdot x$ $f(x) = 2 \cdot x$ $f: x \mapsto 2 \cdot x$

Definitions- und Wertebereich

• Definitionsbereich


Zahlenbereich der für \mathbf{x} (unabhängige Variable) eingesetzt werden darf.


- Einschränkungen des Definitionsbereichs sind nötig bei:
- Textaufgaben, bei denen nur bestimmte x-Wert möglich sind.
- Bruchfunktionen: Division durch Null ist nicht erlaubt. (Nenner $\neq 0$)
- Wurzelfunktionen: unter der Wurzel (Radikant) dürfen keine negativen Zahlen stehen. (Radikant ≥ 0)
- Logarithmus
funktionen: das Argument muss positiv sein. (Argumen
t>0)
- Wertebereich


Zahlenbereich den y (abhängige Variable Funktionswert) annehmen kann.

$y = (x+3)^{-1} -$	$+1 = \frac{1}{x+3} -$	$+1$ $\mathbb{D} = \mathbb{R} \setminus \{-1\}$	$-3\} \qquad \mathbb{W} = \mathbb{R} \setminus \{1\}$
$y = x^{\frac{1}{2}} = \sqrt{x}$	$\mathbb{D} = \mathbb{R}_0^+$	$\mathbb{W} = \mathbb{R}_0^+$	
$y = \log_3(x)$	$\mathbb{D} = \mathbb{R}^+$	$\mathbb{W} = \mathbb{R}$	

3.1.2 Umkehrfunktion

Definition der Umkehrfunktion

- \bullet Jedem Element y aus der Wertemenge W wird genau ein Element x aus der Definitionsmenge D zugeordnet.
- \bullet y unabhängige Variable x abhängige Variable
- Funktionen sind umkehrbar,
- wenn die Graphen der Funktion im Definitionsbereich streng monoton steigen oder streng monoton fallen.
- wenn jede Parallele zur x-Achse den Graphen der Funktion höchstens einmal schneidet.
- $\bullet \qquad \mathbb{D}^{-1} = \mathbb{W} \qquad \mathbb{W}^{-1} = \mathbb{D}$

Funktion:
$$f(x) = \frac{1}{2}x + 2$$
 $f: y = \frac{1}{2}x + 2$ $| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |$ $| y | 0,5 | 1 | 1,5 | 2 | 2,5 | 3 | 3,5 | 4 | 4,5 |$ $\mathbb{D} = \{-3,-2;-1;0;1;2;3;4;5\}$ $\mathbb{W} = \{0,5;1;1,5;2;2,5;3;3,5;4;4,5\}$

keine eindeutige Zordnung \Rightarrow keine Umkehrfunktion

Funktionen Grundlagen

Schreibweise

 $x = f^{-1}(y)$ - Umkehrfunktion

 $f: y \mapsto x$ y-Werte werden auf x-Werte abgebildet

Nach dem Vertauschen der Variablen:

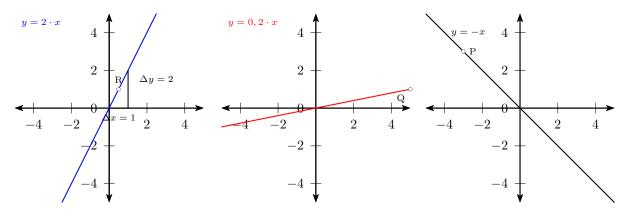
$$y = f^{-1}(x)$$
 - Umkehrfunktion

Funktionsgleichung: $y = 2 \cdot x$

keine eindeutige Zordnung ⇒ keine Funktion

Ermittlen der Umkehrfunktion

Graphisch: Funktionsgraph an der Winkelhalbierenden y=x spiegeln.


Algebraisch: Funktionsgleichung nach ${\bf x}$ auflösen und die Variablen ${\bf x}$ und ${\bf y}$ vertauschen.

$$\begin{array}{l} y=2\cdot x-3 \ /+3 \ /:2 \\ \frac{y+3}{2}=x \\ \frac{1}{2}\cdot y+\frac{3}{2}=x \\ x=\frac{1}{2}\cdot y+\frac{3}{2} \\ f^{-1}(y)=\frac{1}{2}\cdot y+\frac{3}{2} \\ \text{Vertauschen der Variablen:} \\ y=\frac{1}{2}\cdot x+\frac{3}{2} \\ f^{-1}(x)=\frac{1}{2}\cdot x+\frac{3}{2} \end{array}$$

118

Lineare Funktion 3.2

3.2.1 Ursprungsgerade

Ursprungsgerade

$$y = m \cdot x$$

 ${\bf Steigung\text{-}Proportionalit\"{a}tsfaktor:}$

m > 0steigend

m = 0y = 0 entspricht der x-Achse

m < 0fallend

Winkelhalbierende des I und III Quadranten: y = x

Winkelhalbierende des II und IV Quadranten: y = -x

 $y = m \cdot x$

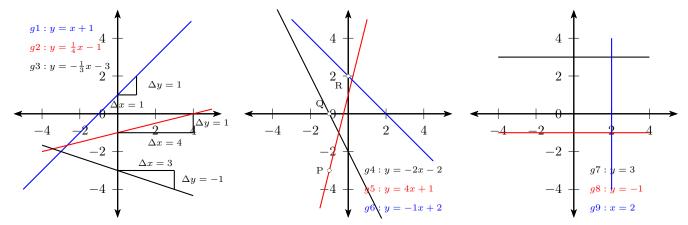
 $y = 2 \cdot x$ m=2 $R(\frac{1}{2}/y) \quad x = \frac{1}{2}$

Q(5/1)x = 5y = 1 $y = \frac{1}{5}x$

 $x = \frac{\pi}{m}$ $P(x/3) \quad y = -1 \cdot x$ y = 3m = -1

 $3 = -1 \cdot x$

 $x = -3 \quad P(-3/3)$


Interaktive Inhalte:

Funktionsgraph

Wertetable

 $y = m \cdot x$

Graph und Eigenschaften 3.2.2

Gerade - lineare Funktion

$$y = m \cdot x + t \qquad f(x) = m \cdot x + t \qquad \mathbb{D} = \mathbb{R} \quad \mathbb{W} = \mathbb{R}$$
 Steigung: $m = \frac{\Delta y}{\Delta x}$ $m > 0$ steigend $m = 0$ parallel zur x-Achse $m < 0$ fallend y-Achsenabschnitt: t Besondere Geraden: $y = 0$ x-Achse $y = t$ Parallele zur x-Achse im Abstand t $x = 0$ y-Achse $x = k$ Parallele zur y-Achse im Abstand k

$$g1: y = x + 1$$
 Steigung: $m = \frac{\Delta y}{\Delta x} = \frac{1}{1} = 1$ $m > 0$ steigend y-Achsenabschnitt: $t = 1$ $g2: y = \frac{1}{4}x - 1$ Steigung: $m = \frac{\Delta y}{\Delta x} = \frac{1}{4}$ $m > 0$ steigend y-Achsenabschnitt: $t = -1$ $g3: y = -\frac{1}{3}x - 3$ Steigung: $m = \frac{\Delta y}{\Delta x} = \frac{-1}{3}$ $m < 0$ fallend y-Achsenabschnitt: $t = -3$ $g5: y = 4x + 1$ Steigung: $m = 4$ $m = \frac{\Delta y}{\Delta x} = \frac{4}{1}$ y-Achsenabschnitt: $t = 1$ $P(-1/y)$ $x = 1$ $y = 4 \cdot (-1) + 1$ $y = -1$ $P(-1/-3)$

Schnittpunkt mit der x-Achse - Nullstelle

$$y = mx + t$$

$$y = 0 mx + t = 0$$

$$x = \frac{-t}{m}$$

$$g4: y = -2x - 2$$

$$0 = -2x - 2 / + 2$$

$$2 = -2x / : (-2)$$

$$x = -1 Q(-1/0)$$

Schnittpunkt mit der y-Achse

$$x = 0 y = m \cdot 0 + t$$
$$y = m \cdot 0 + t$$
$$y = t$$

Schnittpunkt mit der y-Achse:
$$x=0$$
 $g5: y=-x+2$ $y=-1\cdot 0+2$ $y=2$

Graph oberhalb/unterhalb der x-Achse

Einen beliebigen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen des Funktionswerts in die Vorzeichentabelle eintragen.

	x <	x_1	< x
f(x)	+	0	_

+ f(x) > 0 Graph oberhalb der x-Achse

- f(x) < 0 Graph unterhalb der x-Achse

$$\begin{array}{l} g5: y = 4x + 1 = 0 \\ 4x + 1 = 0 & / - 1 \\ 4x = -1 & / : 4 \\ x = \frac{-1}{4} \end{array}$$

Wert kleiner als die Nullstelle wählen: x = -1

 $g5: y = 4 \cdot (-1) + 1 = -3$

Minuszeichen eintragen

Wert größer als die Nullstelle wählen: x = 0

 $g5: y = 4 \cdot (0) + 1 = +1$

Pluszeichen eintragen

Vorzeichentabelle:

voizoionementorio.								
	x < -		< x	Ī				
f(x)	-	0	+					

+ f(x) > 0 Graph oberhalb der x-Achse

$$4x + 1 > 0$$
 für $x \in]-\frac{1}{4};\infty[$

- f(x) < 0 Graph unterhalb der x-Achse

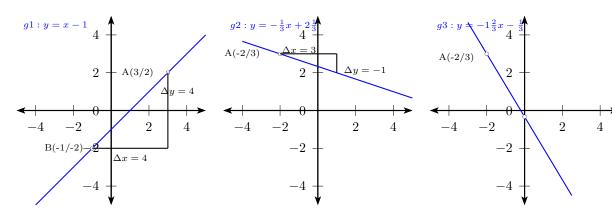
$$4x + 1 < 0$$
 für $x \in]-\infty; -\frac{1}{4}[$

Interaktive Inhalte:

Funktionsgraph

Wertetable

Eigenschaften


 $y = m \cdot x + t$

 $m = \frac{y-t}{r}$

 $x = \frac{y-t}{m}$

 $t = y - m \cdot x$

3.2.3 Geradengleichung aufstellen

Gerade durch 2 Punkte

$$y = m \cdot x + t$$

$$A(xa/ya) \qquad B(xb/yb)$$

$$m = \frac{\Delta y}{\Delta x} = \frac{ya - yb}{xa - xb}$$

$$t = ya - m \cdot xa$$

$$A(3/2) B(-1/-2)$$

$$m = \frac{2+2}{3+1}$$

$$m = 1$$

$$2 = 1 \cdot 3 + t$$

$$2 = 3 + t / - 3$$

$$t = 2 - 3$$

$$t = -1$$

$$g_1 : y = x - 1$$

Gerade durch den Punkt A mit der Steiung m

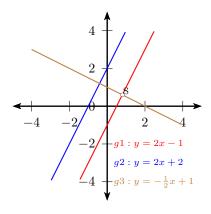
$$y = m \cdot x + t$$

$$A(xa/ya)$$
 Steigung: m
$$t = ya - m \cdot xa$$

$$A(-2/3) m = -\frac{1}{3} 3 = -\frac{1}{3} \cdot (-2) + t 3 = \frac{2}{3} + t / -\frac{2}{3} t = 3 - \frac{2}{3} t = 2\frac{1}{3} g_2 : y = -\frac{1}{3}x + 2\frac{1}{3}$$

Gerade durch den Punkt A und den y-Achsenabschnitt t

$$A(xa/ya)$$
y-Achsenabschnitt:
t
$$m = \frac{ya-t}{xa}$$


Interaktive Inhalte:

2 Punkte

Punkt und Steigung

Punkt und y-Achsenabschnitt

3.2.4 Gerade - Gerade

Parallele Geraden

$$g1: y = m_1 x + t_1$$
 $g2: y = m_2 x + t_2$
 $m_1 = m_2 \Rightarrow g1 \parallel g2$

$$g1: y = 2x - 1$$
 $g2: y = 2x + 2$ $m_1 = m_2$ $2 = 2$ $\Rightarrow g1 \parallel g2$

Senkrechte Geraden

$$g1: y = m_1 x + t_1$$
 $g3: y = m_3 x + t_3$
 $m_1 \cdot m_2 = -1 \Rightarrow g1 \perp g3$

$$g1: y = 2x - 1$$
 $g3: y = -\frac{1}{2}x + 1$
 $m_1 \cdot m_2 = -1$
 $2 \cdot -\frac{1}{2} = -1$
 $\Rightarrow g1 \perp g3$

Schnittpunkt zweier Geraden

$$g1: y = m_1x + t_1$$
 $g3: y = m_3x + t_3$

• Terme gleichsetzen:

$$m_1 x + t_1 = m_2 x + t_2$$

- x-Wert durch Umformen berechnen
- x-Wert in eine der beiden Funktionen einsetzen, um den y-Wert zu berechnen.

$$g_1: y = 2x - 1 \qquad g_2: y = -\frac{1}{2}x + 1$$

$$2x - 1 = -\frac{1}{2}x + 1$$

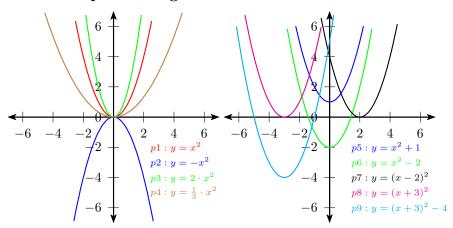
$$2x - 1 = -\frac{1}{2}x + 1 \qquad / + \frac{1}{2}x$$

$$2\frac{1}{2}x - 1 = 1 \qquad / + 1$$

$$2\frac{1}{2}x = 2 \qquad / : 2\frac{1}{2}$$

$$x = \frac{4}{5}$$

$$g_1: y = 2 \cdot \frac{4}{5} - 1$$


$$S(\frac{4}{5}/\frac{3}{5})$$

Interaktive Inhalte:

Funktionsgraph
$$y = m_1 x + t_1$$
 $y = m_2 x + t_2$

3.3 Quadratische Funktion

3.3.1 Graph und Eigenschaften

Formen der Parabelgleichung

Normalparabel	$y = x^2$
Allgemeine Form	$y = ax^2 + bx + c$
Scheitelform	$y = a(x - xs)^2 + ys$
faktorisierte Form	$y = a(x - x_1)(x - x_2)$
a	Formfaktor
a > 0	nach oben geöffnet
a < 0	nach unten geöffnet
a > 1	gestreckt
a < 1	gestaucht
x_s	Verschiebung in x-Richtung
y_s	Verschiebung in y-Richtung
$S(x_s/y_s)$	Scheitelkoordinaten
x_{1}, x_{2}	Nullstellen

 $p1: y = x^2 \quad S(0/0)$ Normalparabel nach oben geöffnet $p2: y = -x^2 \quad S(0/0)$ Normalparabel nach unten geöffnet $p3: y = 2x^{2} S(0/0)$ $p4: y = \frac{1}{3}x^{2} S(0/0)$ a=2 gestreckt $a = \frac{1}{3}$ gestaucht S(0/0) $p5: y = x^{2} + 1$ S(0/1) $p6: y = x^{2} - 2$ S(0/2)1 nach oben verschoben 2 nach unten verschoben $p7: y = (x-2)^2 \quad S(2/0)$ 2 nach rechts verschoben $p8: y = (x+3)^2$ S(-3/0) 3 nach links verschoben $p9: y = (x+3)^2 - 4 \quad S(-3/-4)$ 3 nach links verschoben und 4 nach unten verschoben

Definitions- und Wertebreich

$$\begin{array}{l} p2: y = -x^2 \quad S(0/0) \\ \mathbb{D} = \mathbb{R} \quad \mathbb{W} =]-\infty; 0] \\ p9: y = (x+3)^2 - 4 \quad S(-3/-4) \\ \mathbb{D} = \mathbb{R} \quad \mathbb{W} = [-4; \infty[\end{array}$$

Schnittpunkt mit der x-Achse - Nullstellen

$$y = ax^{2} + bx + c$$

$$y = 0 ax^{2} + bx + c = 0$$

$$x_{1/2} = \frac{-b \pm \sqrt{b^{2} - 4 \cdot a \cdot c}}{2 \cdot a}$$
Diskriminante: $D = b^{2} - 4 \cdot a \cdot c$

$$D = 0 eine Nullstelle$$

$$D > 0 zwei Nullstellen$$

D < 0 keine Nullstelle

$$p9: y = x^{2} + 6x + 5 = 0$$

$$1x^{2} + 6x + 5 = 0$$

$$x_{1/2} = \frac{-6 \pm \sqrt{6^{2} - 4 \cdot 1 \cdot 5}}{2 \cdot 1}$$

$$x_{1/2} = \frac{-6 \pm \sqrt{16}}{2} = \frac{-6 \pm 4}{2}$$

$$x_{1} = \frac{-6 + 4}{2} \quad x_{2} = \frac{-6 - 4}{2}$$

$$x_{1} = -1 \quad x_{2} = -5$$

$$D > 0 \Rightarrow \text{zwei Nullstellen}$$

$$p9: y = x^{2} + 6x + 5 = (x + 5)(x + 1)$$

$$p5: y = x^{2} + 1 = 0$$

$$x_{1/2} = \frac{-0 \pm \sqrt{0^{2} - 4 \cdot 1 \cdot 1}}{2}$$

$$x_{1/2} = \frac{-0 \pm \sqrt{-4}}{2}$$

$$D < 0 \Rightarrow \text{keine Nullstelle}$$

$$p8: y = x^{2} + 6x + 9 = 0$$

$$x_{1/2} = \frac{-6 \pm \sqrt{6^{2} - 4 \cdot 1 \cdot 9}}{2 \cdot 1}$$

$$x_{1/2} = \frac{-6 \pm \sqrt{0}}{2} = \frac{-6 \pm 0}{2}$$

$$x_{1/2} = -3 \quad D = 0 \Rightarrow \text{eine Nullstellen}$$

Schnittpunkt mit der y-Achse

$$p: y = ax^{2} + bx + c$$

$$x = 0 p: y = a \cdot 0^{2} + b \cdot 0 + c$$

$$p(x) = c Q(0/c)$$

$$p9: y = x^{2} + 6x + 5$$

$$y = 0^{2} + 6 \cdot 0 + 5$$

$$y = 5 \qquad Q(0/5)$$

Allgemeine Form in Scheitelform

Allgemeine Form: $y = ax^2 + bx + c$ Scheitelform: $y = a(x - xs)^2 + ys$ Quadratische Ergänzung: $y = ax^2 + bx + c$ $y = a(x^2 + \frac{b}{a}x) + c$ $y = a(x^2 + \frac{b}{a}x) + (\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$ $y = a[(x + \frac{b}{2a})^2 - (\frac{b}{2a})^2] + c$ $y = a(x + \frac{b}{2a})^2 - a \cdot \frac{b^2}{4a^2} + c$ $y = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a} + c$ $x_s = -\frac{b}{2 \cdot a}$ $y_s = c - \frac{b^2}{4 \cdot a}$ Scheitelformel: $S(x_s/y_s)$ $S(-\frac{b}{2 \cdot a}/c - \frac{b^2}{4 \cdot a})$

quadratische Ergänzung $p9: y = x^2 + 6x + 5$ $p9: y = (x^2 + 6x + 5)$ $p9: y = (x^2 + 6x + 3^2 - 3^2 + 5)$ $p9: y = [(x + 3)^2 - 3^2 + 5]$ $p9: y = [(x + 3)^2 - 9 + 5]$ $p9: y = [(x + 3)^2 - 4]$ $p9: y = (x + 3)^2 - 4$ Scheitelformel $y = x^2 + 6x + 5$ $xs = -\frac{6}{2 \cdot 1}$ xs = -3 $ys = 5 - \frac{6^2}{4 \cdot 1}$ ys = -4 Scheitel(-3/-4) $p9: y = (x + 3)^2 - 4$

Interaktive Inhalte:

Funktionsgraph Wertetable $y = a \cdot x^2 + b \cdot x + c$ Eigenschaften

3.3.2 Parabelgleichung aufstellen und umformen

Parabelgleichung aus 2 Punkten und dem Formfaktor

Gegeben: Formfaktor a und Punkte $A(x_a/y_a)$ und $B(x_b/y_b)$

• Formfaktor a und Punkt $A(x_a/y_a)$ in die Funktionsgleichung einsetzen.

$$y_a = ax_a^2 + bx_a + c$$

 \bullet Formfaktor a und Punkt $B(x_b/y_b)$ in die Funktionsgleichung einsetzen.

$$y_b = ax_b^2 + bx_b + c$$

siehe Lösung von linearen Gleichungssystemen

$$a = -2 \qquad A(2/-1) \qquad B(-1/4)$$
 Formfaktor a einsetzen:
$$y = -2x^2 + bx + c$$
 I)Punkt A einsetzen
$$-1 = -2 \cdot 2^2 + b \cdot 2 + c$$

$$-1 = -8 + 2b + c \qquad / + 8 \qquad / - 2b$$

$$-1 + 8 - 2b = c$$

$$7 - 2b = c$$
 II)Punkt B einsetzen
$$4 = -2 \cdot (-1)^2 + b \cdot (-1) + c$$

$$4 = -2 - 1b + c$$
 I in II
$$4 = -2 - 1b + 7 - 2b$$

$$4 = 5 - 3b \qquad / - 5 \qquad / : (-3)$$

$$b = \frac{4-5}{3}$$

$$b = \frac{1}{3}$$

$$c = 7 - 2 \cdot \frac{1}{3}$$

$$c = 6\frac{1}{3}$$

$$y = -2x^2 + \frac{1}{3}x + 6\frac{1}{3}$$

Parabelgleichung aus Formfaktor und dem Scheitel

Formfaktor a und Scheitel in Scheitelform einsetzen:

$$y = a(x - xs)^2 + ys$$

Binomische Formel auflösen:

$$y = a(x^2 - 2 \cdot x \cdot xs + xs^2) + ys$$

$$y = a \cdot x^2 - 2 \cdot a \cdot x \cdot xs + a \cdot xs^2 + ys$$

Formfaktor: $a = -\frac{1}{2}$ S(2/-3) $y = a(x - xs)^2 + ys$ $y = -\frac{1}{2}(x - 2)^2 - 3$ $y = -\frac{1}{2}(x^2 - 4x + 2^2) - 3$ $y = -\frac{1}{2}x^2 + 2x - 5$

Parabelgleichung aus einem Punkt und dem Scheitel

Punkt $A(x_a/y_a)$ und Scheitel $S(x_s/y_s)$ in die Scheitelform einsetzen und nach a auflösen. $y_a = a(x_a - x_s)^2 + y_s$

$$A(2/-4) S(1/2) y = a(x-xs)^2 + ys -4 = a(2-1)^2 + 2 -4 = 1 \cdot a + 2 / -2 / : 1 a = \frac{-4-2}{1} a = -6 y = -6(x-1)^2 + 2 y = -6(x^2 - 2x + 1^2) + 2 y = -6x^2 + 12x - 4$$

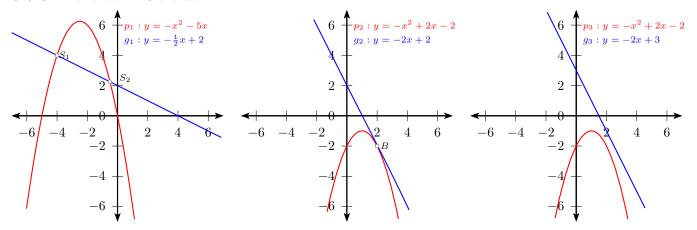
Parabelgleichung aus Formfaktor und Nullstellen

Formfaktor a und Nullstellen in die faktorisierte Form einsetzen.

$$P(x_1/0) Q(x_2/0) a$$

$$y = a(x - x_1)(x - x_2)$$

$$y = a(x^2 - x_1 \cdot x - x_2 \cdot x + x_1 \cdot x_2)$$


$$y = ax^2 - a \cdot x_1 \cdot x - a \cdot x_2 \cdot x + a \cdot x_1 \cdot x_2$$

Nullstellen
$$x_1 = 1$$
 $x_2 = -4$ $a = 7$
 $P(1/0)$ $Q(-4/0)$ $a = 7$
 $y = a(x - x_1)(x - x_2)$
 $y = 7(x - 1)(x + 4)$
 $y = 7(x^2 + 4x - 1x - 4)$
 $y = 7(x^2 + 3x - 4)$
 $y = 7x^2 + 21x - 28$

Interaktive Inhalte:

Funktionsgraph Wertetable 2 Punkte und Formfaktor Scheitel und Formfaktor Scheitel und Punkt Nullstellen

3.3.3 Parabel - Gerade

$$p: y = ax^2 + bx + c \qquad g: y = mx + t$$

Terme gleichsetzen: $ax^2 + bx + c = mx + t$

Term nach Null umformen: $ax^2 + (b - m)x + c - t = 0$

Lösung der quadratischen Gleichung:

$$\begin{aligned} ax^2 + bx + c &= 0 \\ x_{1/2} &= \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a} \end{aligned}$$

Diskriminante:

$$D = b^2 - 4 \cdot a \cdot c$$

D=0 Gerade ist Tangente - Berührpunkt

D > 0 Gerade ist Sekante - zwei Schnittpunkte

D < 0 Gerade ist Passante - keinen Schnittpunkt

Die x-Wert(e) in eine der beiden Funktionen einsetzen, um den y-Wert zu berechnen.

$$p_1: y = -x^2 - 5x \qquad g_1: y = -\frac{1}{2}x + 2$$

$$-1x^2 - 5x = -\frac{1}{2}x + 2 \qquad / + \frac{1}{2}x/-2$$

$$-1x^2 - 5x + \frac{1}{2}x - 2 = 0$$

$$-1x^2 - 4\frac{1}{2}x - 2 = 0$$

$$x_{1/2} = \frac{+4\frac{1}{2} \pm \sqrt{\left(-4\frac{1}{2}\right)^2 - 4 \cdot (-1) \cdot (-2)}}{2 \cdot (-1)}$$

$$x_{1/2} = \frac{+4\frac{1}{2} \pm \sqrt{12\frac{1}{4}}}{-2}$$

$$x_{1/2} = \frac{4\frac{1}{2} \pm 3\frac{1}{2}}{-2}$$

$$x_{1/2} = \frac{4\frac{1}{2} + 3\frac{1}{2}}{-2}$$

$$x_1 = \frac{4\frac{1}{2} + 3\frac{1}{2}}{-2}$$

$$x_2 = \frac{4\frac{1}{2} - 3\frac{1}{2}}{-2}$$

$$x_1 = -4 \qquad x_2 = -\frac{1}{2}$$

$$D > 0 \quad \text{Gerade ist Sekante - zwei Schnittpunkte}$$

$$y = -1(-4)^2 - 5(-4) = 4 \qquad S_1(-4/4)$$

$$y = -\frac{1}{2}(-\frac{1}{2}) + 2 = 2\frac{1}{4} \qquad S_2(-\frac{1}{2}/2\frac{1}{4})$$

$$p_2: y = -x^2 + 2x - 2 \qquad g_2: y = -2x + 2$$

$$-x^2 + 2x - 2 = -2x + 2$$

$$-x^2 + 2x - 2 + 2x - 2) = 0$$

$$-x^2 + 4x - 4 = 0$$

$$x_{1/2} = \frac{-4 \pm \sqrt{4^2 - 4 \cdot (-1) \cdot (-4)}}{2 \cdot (-1)}$$

$$x_{1/2} = \frac{-4 \pm \sqrt{0}}{-2} \qquad = \frac{-4 \pm 0}{-2}$$

$$x_{1/2} = \frac{-4 + 0}{-2} \qquad x_2 = \frac{-4 - 0}{-2}$$

$$x_{1/2} = 2$$

$$D = 0 \qquad \text{Gerade ist Tangente - Berührpunkt}$$

$$y = -2$$

$$B(2/-2)$$

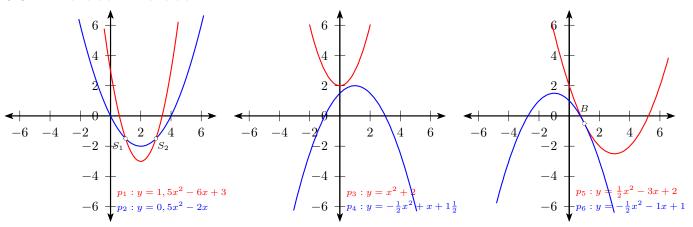
$$p_3: y = -x^2 + 2x - 2 \qquad g_3: y = -2x + 3$$

$$-x^2 + 2x - 2 = -2x + 3$$

$$-x^2 + 2x - 2 + 2x - 3) = 0$$

$$-x^2 + 4x - 5 = 0$$

$$x_{1/2} = \frac{-4 \pm \sqrt{4^2 - 4 \cdot (-1) \cdot (-5)}}{2 \cdot (-1)}$$


$$x_{1/2} = \frac{-4 \pm \sqrt{-4}}{-2}$$

$$D < 0 \qquad \text{Gerade ist Passante - keinen Schnittpunkt}$$

Interaktive Inhalte:

Funktionsgraph Wertetable Parabel-Gerade

3.3.4 Parabel - Parabel

$$p_1: y = a_1 x^2 + b_1 x + c_1$$

$$p_2: y = a_2 x^2 + b_2 x + c_2$$

Terme gleichsetzen:

$$a_1x^2 + b_1x + c_1 = a_2x^2 + b_2x + c_2$$

Term nach Null umformen:

$$ax^2 + bx + c = 0$$

Lösung der quadratischen Gleichung:

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Diskriminante: $D = b^2 - 4 \cdot a \cdot c$

D=0 Berührpunkt

D>0 zwei Schnittpunkte

D < 0keinen Schnittpunkt

Die x-Wert(e) in eine der beiden Funktionen einsetzen, um den y-Wert zu berechnen.

$$p_1: y = \frac{1}{2}x^2 - 6x + 3 \qquad p_2: y = \frac{1}{2}x^2 - 2x$$

$$\frac{1}{2}x^2 - 6x + 3 = \frac{1}{2}x^2 - 2x$$

$$\frac{1}{2}x^2 - 6x + 3 - (\frac{1}{2}x^2 - 2x) = 0$$

$$1x^2 - 4x + 3 = 0$$

$$x_{1/2} = \frac{+4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$x_{1/2} = \frac{+4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$$

$$x_1 = \frac{4 + 2}{2} \qquad x_2 = \frac{4 - 2}{2}$$

$$x_1 = 3 \qquad x_2 = 1$$

$$D > 0 \text{ zwei Schnittpunkte}$$

$$y = \frac{1}{2} \cdot 3^2 - 6 \cdot 3 + 3 = -\frac{1}{2} \qquad S_1(3/-\frac{1}{2})$$

$$y = \frac{1}{2} \cdot 1^2 - 6 \cdot 1 + 3 = -\frac{1}{2} \qquad S_2(1/-\frac{1}{2})$$

$$\begin{split} p_3: y &= x^2 + 2 & p_4: y = -\frac{1}{2}x^2 + x + 1\frac{1}{2} \\ x^2 + 2 - \left(-\frac{1}{2}x^2 + x + 1\frac{1}{2}\right) &= 0 \\ 1\frac{1}{2}x^2 - 1x + \frac{1}{2} &= 0 \\ x_{1/2} &= \frac{+1 \pm \sqrt{\left(-1\right)^2 - 4 \cdot 1\frac{1}{2} \cdot \frac{1}{2}}}{2 \cdot 1\frac{1}{2}} \\ x_{1/2} &= \frac{+1 \pm \sqrt{-2}}{3} \\ D &< 0 \text{ keinen Schnittpunkt} \end{split}$$

$$p_5: y = \frac{1}{2}x^2 - 3x + 2 \qquad p_6: y = -\frac{1}{2}x^2 - 1x + 1$$

$$y = \frac{1}{2}x^2 - 3x + 2 = -\frac{1}{2}x^2 - 1x + 1$$

$$\frac{1}{2}x^2 - 3x + 2 - (-\frac{1}{2}x^2 - 1x + 1) = 0$$

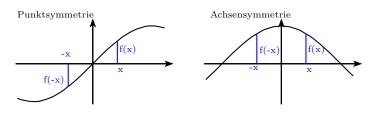
$$1x^2 - 2x + 1 = 0$$

$$x_{1/2} = \frac{+2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$x_{1/2} = \frac{+2 \pm \sqrt{0}}{2}$$

$$x_{1/2} = \frac{2 \pm 0}{2}$$

$$x_1 = \frac{2 + 0}{2}$$


$$x_2 = 1 \qquad D = 0 \text{ Berührpunkt} \qquad B(1/-\frac{1}{2})$$

Interaktive Inhalte:

Funktionsgraph Wertetable Parabel-Parabel

3.4 Eigenschaften von Funktionen

3.4.1 Symmetrie

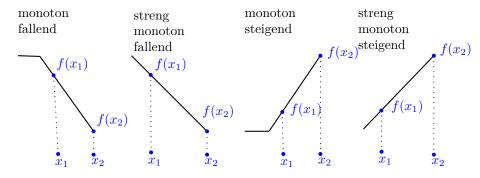
Punktsymmetrie zum Ursprung - ungerade Funktion

$$f(-x) = -f(x) \Rightarrow f(x)$$
 ist eine ungerade Funktion

$$f(x) = -2x^5 + 3x^3$$

$$f(-x) = -2 \cdot (-x)^5 + 3 \cdot (-x)^3$$

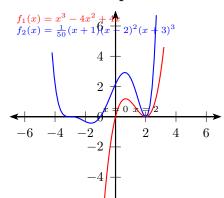
$$f(-x) = -\left(-2 \cdot x^5 + 3 \cdot x^3\right)$$

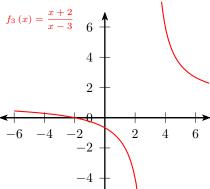

$$f(-x) = -f(x) \Rightarrow f(x) \text{ist eine ungerade Funktion}$$

Achsensymmetrie zur y-Achse - gerade Funktion

$$f(-x) = f(x) \Rightarrow f(x)$$
 ist eine gerade Funktion

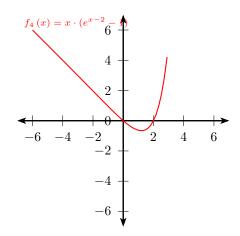
$$\begin{array}{l} f\left(x\right) = x^{4} + 2 \cdot x^{2} + 1 \\ f\left(-x\right) = (-x)^{4} + 2 \cdot (-x)^{2} + 1 \\ f\left(-x\right) = x^{4} + 2 \cdot x^{2} + 1 \\ f\left(-x\right) = f\left(x\right) \Rightarrow f(x) \text{ist eine gerade Funktion} \end{array}$$


3.4.2 Monotonie



$$x_1 < x_2$$

monoton steigend $f(x_1) \le f(x_2)$
streng monoton steigend sms $f(x_1) < f(x_2)$
monoton fallend $f(x_1) \ge f(x_2)$
streng monoton fallend smf $f(x_1) > f(x_2)$


129

3.4.3 Schnittpunkte mit den Koordinatenachsen

-6

Schnittpunkte mit der x-Achse - Nullstellen

Funktionsterm gleich Null setzen und die Gleichung lösen. f(x) = 0 (siehe Algebra-Gleichungen)

- Vielfachheit der Nullstelle gerade
- Nullstelle ohne Vorzeichenwechsel (VZW)
- Berührpunkt mit die x-Achse (Hoch- oder Tiefpunkt)
- Vielfachheit der Nullstelle ungerade
- Nullstelle mit Vorzeichenwechsel (VZW)
- Schnittpunkt mit die x-Achse

Einfache Nullstelle mit VZW: $f(x) = (x - x_1) \cdot ...$

Zweifache Nullstelle ohne VZW: $f(x) = (x - x_1)^2 \cdot ...$

Dreifache Nullstelle mit VZW: $f(x) = (x - x_1)^3 \cdot ...$

Vierfache Nullstelle ohne VZW: $f(x) = (x - x_1)^4 \cdot ...$

 $f_1(x) = x^3 - 4x^2 + 4x = x(x^2 - 4x + 4) = x(x - 2)^2$ Einfache Nullstelle mit VZW: x = 0 $N_1(0/0)$ Zweifache Nullstelle ohne VZW: x = 2 $N_2(2/0)$

 $\begin{array}{ll} f_2(x) = \frac{1}{50}(x+1)(x-2)^2(x+3)^3 \\ \text{Einfache Nullstelle mit VZW: } x = -1 & N_1(-1/0) \\ \text{Zweifache Nullstelle ohne VZW: } x = 2 & N_2(2/0) \\ \text{Dreifache Nullstelle mit VZW: } x = -3 & N_3(-3/0) \\ f_4(x) = x \cdot (e^{x-2}-1) & N_3(-3/0) \\ e^{(x-2)} - 1 = 0 & /+1 \\ e^{(x-2)} = 1 & /\ln \\ x - 2 = \ln(1) & /+2 \\ x = 2 & \end{array}$

Schnittpunkte mit der y-Achse

x=0 in den Funktionsterm einsetzen.

$$f_1(x) = x^3 - 4x^2 + 4x = x(x^2 - 4x + 4) = x(x - 2)^2$$

$$f_1(0) = 0^3 - 4 \cdot 0^2 + 4 \cdot 0 = 0$$

$$P(0/0)$$

$$f_2(x) = \frac{1}{50}(x+1)(x-2)^2(x+3)^3$$

$$f_2(0) = \frac{1}{50}(0+1)(0-2)^2(0+3)^3 = 2,16$$

$$Q(0/2,16)$$

130

Graph oberhalb/unterhalb der x-Achse

Bei Funktionen kann sich das Vorzeichen nur an den Nullstellen oder den Definitionslücken ändern. Einen beliebigen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen des Funktionswerts in die Tabelle eintragen.

Vorzeichentabelle mit f(x)

			()
	x <	x_1	< x
f(x)	+	0	_
Graph	oberhalb	0	unterhalb

Graph oberhalb der x-Achse f(x) > 0

f(x) < 0Graph unterhalb der x-Achse $f_1(x) = x^3 - 4x^2 + 4x = x(x^2 - 4x + 4) = x(x - 2)^2$

Nullstellen: $x_1 = 0$ $x_2 = 2$

Wert kleiner als 0 wählen: -1 < 0 $f_1(-1) = -1 < 0 \Rightarrow -$

Wert zwischen 0 und 2 wählen:

0 < 1, 2 < 2 $f_1(1,2) = 0,768 > 0 \Rightarrow +$

Wert größer als 2 wählen: 3 > 2 $f_1(3) = 1 > 0 \Rightarrow +$

Vorzeichentabelle:

x < |0| < x < | $2 \mid \langle x \mid$ f(x)- 0 0

 $x \in]0;2[$ \cup $]2;\infty[$ f(x)>0 oberhalb der x-Achse $x \in]-\infty;0[$ f(x) < 0 unterhalb der x-Achse

 $f_3\left(x\right) = \frac{x+2}{x-3}$

Definitionsbereich: $\mathbb{D} = \mathbb{R} \setminus \{3\}$

 $x_1 = -2$ 1-fache Nullstelle

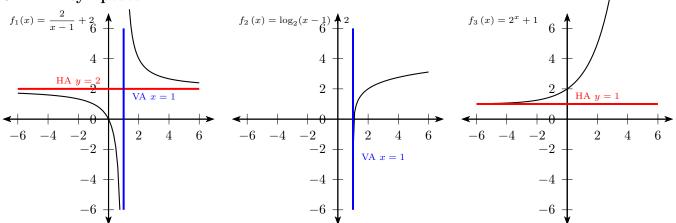
Vorzeichentabelle:

x < | -2< x <+ 0 0 +

 $x \in]-\infty; -2[\cup]3; \infty[f(x) > 0$ oberhalb der x-Achse $x \in]-2;3[$ f(x) < 0 unterhalb der x-Achse

 $f_4(x) = x \cdot (e^{x-2} - 1)$

 $x_1 = 0$; 1-fache Nullstelle


 $x_2 = 2$; 1-fache Nullstelle

,					
	x <	0	< x <	2	< x
f(x)	+	0	_	0	+

 $x \in]-\infty;0[$ \cup $]2;\infty[$ f(x)>0 oberhalb der x-Achse

 $x \in]0;2[$ f(x) < 0 unterhalb der x-Achse

3.4.4 Asymptote

HA - Horizontale (waagerechte) Asymptote; VA - Vertikale (senkrechte) Asymptote - Polstelle

Definition

Eine Asymptote ist ein Gerade, der sich eine Funktion beliebig weit annähert. (siehe Analysis - Grenzwerte)

$$f_1(x) = \frac{2}{x - 1} + 2$$

nicht kürzbare Nullstellen des Nenners

VA: x = 1HA: y=2

Horizontale (waagerechte) Asymptote

Funktionsgleichung:
$$y = a$$

$$f_3(x) = 2^x + 1$$
$$HA: y = 1$$

Vertikale (senkrechte) Asymptote - Polstelle

Funktionsgleichung:
$$x = b$$

$$f_2(x) = \log_2(x-1) + 2$$

 $VA: x = 1$

3.4.5 Verknüpfung von Funktionen

Addition von Funktionen

$$u(x) = f(x) + g(x)$$

$$f(x) = x^2$$

$$g(x) = e^x$$

$$u(x) = f(x) + g(x)$$

$$u(x) = x^2 + e^x$$

Subtraktion von Funktionen

$$u(x) = f(x) - g(x)$$

$$f(x) = x2$$

$$g(x) = ex$$

$$u(x) = f(x) - g(x)$$

$$u(x) = x2 - ex$$

Multiplikation von Funktionen

$$u(x) = f(x) \cdot g(x)$$

$$f(x) = x^{2}$$

$$g(x) = e^{x}$$

$$u(x) = f(x) \cdot g(x)$$

$$u(x) = x^{2} \cdot e^{x}$$

Division von Funktionen

$$u(x) = \frac{f(x)}{g(x)}$$

$$f(x) = x^{2}$$

$$g(x) = e^{x}$$

$$u(x) = \frac{f(x)}{g(x)}$$

$$u(x) = \frac{x^{2}}{e^{x}}$$

Verketten von Funktionen

äußere Funktion
$$f(x)$$
 - innere Funktion $g(x)$
$$u(x) = f(g(x)) \text{ oder } f \circ g = f(g(x)) \text{ f nach g}$$

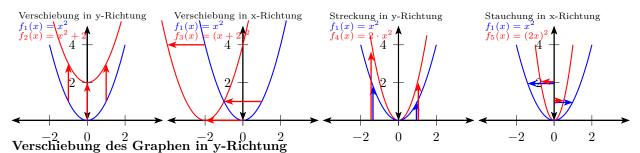
äußere Funktion g(x) - innere Funktion f(x)
$$v(x) = g(f(x)) \text{ oder } g \circ f = g(f(x)) \qquad \text{g nach f}$$

$$f(x) = x^{2}$$

$$g(x) = e^{x}$$

$$u(x) = f(g(x))$$

$$u(x) = (e^{x})^{2}$$


$$v(x) = g(f(x))$$

$$v(x) = e^{x^{2}}$$

Interaktive Inhalte:

Funktionsgraph

3.4.6 Abbildung von Funktionen

$$y = f(x) + d$$

$$f_1(x) = x^2$$
 $f_2(x) = x^2 + 2$
Verschiebung um d=2 in y-Richtung $g_1(x) = e^x$ $g_2(x) = e^x - 3$
Verschiebung um d= -3 in y-Richtung

Verschiebung des Graphen in x-Richtung

$$y = f(x - c)$$

$$f_1(x) = x^2$$
 $f_3(x) = (x-2)^2$
Verschiebung um c=2 in x-Richtung $g_1(x) = e^x$ $g_3(x) = e^{x+3}$
Verschiebung um c= -3 in x-Richtung

Streckung - Stauchung in y-Richtung

 $y = a \cdot f(x)$

a > 1: Streckung in y-Richtung

0 < a < 1: Stauchung in y-Richtung

a = -1: Spiegelung an der x-Achse

 $a<-1{\rm :}$ Spiegelung an der x-Achse und Streckung in y-Richtung

 $f_1(x)=x^2$ $f_4(x)=2x^2$ Streckung in y-Richtung mit a=2 $g_1(x)=e^x$ $g_4(x)=\frac{1}{3}e^x$ Stauchung in y-Richtung mit $a=\frac{1}{3}$ $f_5(x)=e^x$ $f_6(x)=-e^x$ Spiegelung an der x-Achse

Streckung - Stauchung in x-Richtung

 $y = f(b \cdot x)$

b > 1: Stauchung in x-Richung mit $\frac{1}{b}$

0 < b < 1: Streckung in x-Richtung mit $\frac{1}{b}$

b = -1: Spiegelung an der y-Achse

b<-1: Spiegelung an der y-Achse und Stauchung in x-Richung mit $\frac{1}{b}$

$$\begin{array}{ll} f_1(x)=x^2 & f_5(x)=(2x)^2 \\ b=2 \text{ Stauchung in x-Richtung mit } \frac{1}{2} \\ g_1(x)=e^x & f_5(x)=e^{(\frac{1}{3}x)} \\ b=\frac{1}{3} \text{ Streckung in x-Richtung mit } 3 \\ f_5(x)=e^x & f_6(x)=e^{-x} \\ \text{Spiegelung an der y-Achse} \end{array}$$

Zusammenfassung

$$y = a \cdot f(b(x - c)) + d$$

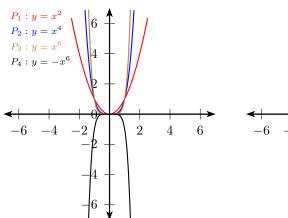
$$y = a \cdot f(bx - cb) + d$$

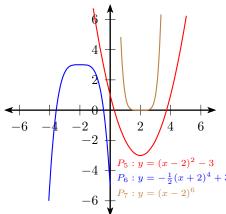
a: Streckung/Stauchung in y-Richtung

 $\frac{1}{h}$: Streckung/Stauchung in x-Richtung

c: Verschiebung des Graphen in x-Richtung

d: Verschiebung des Graphen in y-Richtung


$$f_1(x)=x^2$$
 $f_2(x)=-3(2x-6)^2+1=-3[2(x-3)]^2+1$
Streckung in y-Richtung und Spieglung an der x-Achse: $a=-3$
Stauchung in x-Richtung: $\frac{1}{b}=\frac{1}{2}$
Verschiebung des Graphen in x-Richtung: $c=\frac{-6}{2}=3$
Verschiebung in y-Richtung: $d=1$
Verschiebung in x-Richtung: 3


<u>Interaktive Inhalte:</u>

Funktionsgraph

3.5 Potenzfunktion

3.5.1 Parabeln vom Grad n - gerader Exponent

Formen der Parabelgleichung - gerader Exponent

Exponent: 2,4,6..

Grundfunktion: $y = x^n$

Funktion mit Formvariablen:

$$y = a(x - c)^n + d$$

$$y = a(b(x-c))^n + d$$

 $P_1: y = x^2$ $P_5: y = (x-2)^2 - 3$

Verschiebung um 2 in x-Richtung und um -3 in y-Richtung

 $P_2: y = x^4$ $P_6: y = -\frac{1}{2}(x+2)^4 + 3$

Verschiebung um -2 in x-Richtung und um 3 in y-Richtung Spiegelung an der x-Achse und Stauchung um $\frac{1}{2}$ in y-Richtung

 $P_3: y = x^6$ $P_9: y = 2(x+4)^4$

Streckung um 2 in y-Richtung und Verschiebung um -4 in x-

Richtung

 $P_3: y = x^6$ $P_7: y = (x-2)^6$

Verschiebung um 2 in x-Richtung

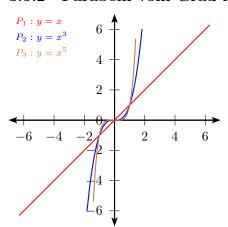
Definitions- und Wertebereich

$$y = x^{n} \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = \mathbb{R}_{0}^{+}$$

$$y = a(b(x - c))^{n} + d \qquad \mathbb{D} = \mathbb{R}$$

$$a > 0 \quad \mathbb{W} = [d; \infty[$$

$$a < 0 \quad \mathbb{W} =] - \infty; d]$$


 $\begin{array}{lll} P_2: y = x^4 & \mathbb{D} = \mathbb{R} & \mathbb{W} = \mathbb{R}_0^+ \\ P_5: y = (x-2)^2 - 3 & \mathbb{D} = \mathbb{R} & \mathbb{W} = [-3; \infty[\\ P_4: y = -x^6 & \mathbb{D} = \mathbb{R} & \mathbb{W} = \mathbb{R}_0^- \\ P_6: y = -\frac{1}{2}(x+2)^4 + 3 & \mathbb{D} = \mathbb{R} & \mathbb{W} =]-\infty; 3] \; P_9: y = 2(x+4)^4 \\ \mathbb{D} = \mathbb{R} & \mathbb{W} = \mathbb{R}_0^+ \end{array}$

Interaktive Inhalte:

Funktionsgraph

Wertetable

3.5.2 Parabeln vom Grad n - ungerader Exponent

Formen der Parabelgleichung - ungerader Exponent

Exponent: 1,3,5...

Grundfunktion: $y = x^n$

Funktion mit Formvariablen:

$$y = a(x - c)^n + d$$

$$y = a(b(x-c))^n + d$$

 $P_1: y = x$ $P_4: y = -2x - 2$

Verschiebung um -2 in y-Richtung und Strechung um -2 in y-Richtung.

 $P_2: y = x^3$ $P_5: y = (x-2)^3 + 1$

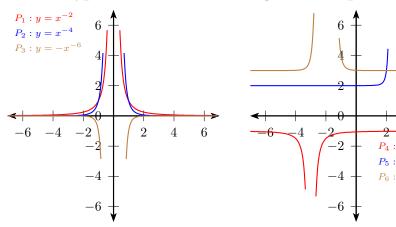
Verschiebung um 2 in x-Richtung und um 1 in y-Richtung.

 $P_3: y = x^5$ $P_6: y = -(x+3)^5$

Spiegelung an der x-Achse und Verschiebung um -3 in x-Richtung.

Definitions- und Wertebereich

$$y = x^n$$
 $\mathbb{D} = \mathbb{R}$ $\mathbb{W} = \mathbb{R}$
 $y = a(b(x - c))^n + d$ $\mathbb{D} = \mathbb{R}$ $\mathbb{W} = \mathbb{R}$


$$P_2: y = x^3$$
 $\mathbb{D} = \mathbb{R}$ $\mathbb{W} = \mathbb{R}$
 $P_5: y = (x-2)^3 + 1$ $\mathbb{D} = \mathbb{R}$ $\mathbb{W} = \mathbb{R}$

Interaktive Inhalte:

Funktionsgraph

Wertetable

3.5.3 Hyperbeln vom Grad n - gerader Exponent

Formen der Hyperbelgleichung - gerader Exponent

Exponent: -2,-4,-6..

Grundfunktion: $y = x^{-n} = \frac{1}{x^n}$

Funktion mit Formvariablen:

$$y = a(x-c)^{-n} + d = \frac{a}{(x-c)^n} + d$$

$$y = a(x-c)^{-n} + d = \frac{a}{(x-c)^n} + d$$
$$y = a(b(x-c))^{-n} + d = \frac{a}{(b(x-c))^n} + d$$

 $P_1: y = x^{-2}$ $P_4: y = -0, 5(x+3)^{-2} - 1$

Verschiebung um -3 in x-Richtung und um -1 in y-Richtung Streckung um -0,5 in y-Richtung

 $P_2: y = x^{-4}$ $P_5: y = (2x - 5)^{-4} + 2 = (2(x - 2, 5))^{-4} + 2$

Verschiebung um 2,5 in x-Richtung und um 2 in y-Richtung

Stauchung um 2 in x-Richtung

 $y = x^{-6}$ $P_6: y = (x+2)^{-6} + 3$

Streckung um -2 in x-Richtung und um 3 in y-Richtung

Definitions- und Wertebereich

$$y = x^{-n} = \frac{1}{x^n} \quad \mathbb{D} = \mathbb{R} \setminus \{0\} \quad \mathbb{W} = \mathbb{R}^+$$

$$y = a(b(x - c))^{-n} + d \quad \mathbb{D} = \mathbb{R} \setminus \{c\}$$

$$a > 0 \quad \mathbb{W} =]d; \infty[$$

$$a < 0 \quad \mathbb{W} =] - \infty; d[$$

$$P_1: y = x^{-2}$$
 $\mathbb{D} = \mathbb{R} \setminus \{0\}$ $\mathbb{W} = \mathbb{R}^+$
 $P_4: y = -0, 5(x+3)^{-2} - 1$ $\mathbb{D} = \mathbb{R} \setminus \{-3\}$ $\mathbb{W} =]-\infty; -1[$ $P_6: y = (x+2)^{-6} + 3$ $\mathbb{D} = \mathbb{R} \setminus \{-2\}$ $\mathbb{W} =]3; \infty[$

Asymptoten

$$y=x^{-n}=\frac{1}{x^n}$$

Horizontale Asymptote (HA): y = 0

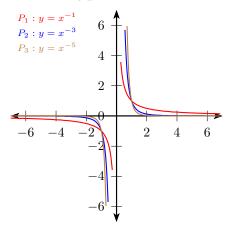
Vertikale Asymptote (VA): x = 0

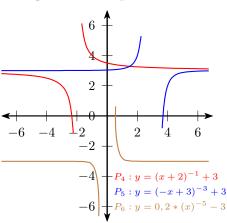
$$y = a(b(x-c))^{-n} + d$$

Horizontale Asymptote: y = d

Vertikale Asymptote: x = c

$$P_1: y = x^{-2}$$
 HA: $y = 0$ VA: $x = 0$
 $P_4: y = -0, 5(x+3)^{-2} - 1$ HA: $y = -1$ VA: $x = -3$


$$P_6: y = (x+2)^{-6} + 3$$
 HA: $y = 3$ VA: $x = -2$


Interaktive Inhalte:

Funktionsgraph

Wertetable

3.5.4 Hyperbeln vom Grad n - ungerader Exponent

Formen der Hyperbelgleichung - ungerader Exponent

Exponent: -1,-3,-5...

Grundfunktion: $y = x^{-n} = \frac{1}{x^n}$

Funktion mit Formvariablen:

$$y = a(x-c)^{-n} + d = \frac{a}{(x-c)^n} + d$$

$$y = a(b(x-c))^{-n} + d = \frac{(x-c)^n}{a} + d$$

 $P_1: y = x^{-1}$ $P_4: y = (x+2)^{-1} + 3$

Verschiebung um -2 in x-Richtung um 3 in y-Richtung $P_2: y = x^{-3}$ $P_5: y = (-x+3)^{-3} + 3 = (-1(x-3))^{-3} + 3$

Verschiebung um 3 in x-Richtung und um 3 in y-Richtung

Spiegelung an der y-Achse

 $P_3: y = x^{-5}$ $P_6: y = 0, 2 * x^{-5} - 3$

 $f_3 \cdot y = x$ $f_6 \cdot y = 0, 2 * x = -3$

Streckung um -3 in y-Richtung und Stauchung um 0,2 in y-Richtung

Definitions- und Wertebereich

$$y = x^{-n} \qquad \mathbb{D} = \mathbb{R} \setminus \{0\} \qquad \mathbb{W} = \mathbb{R} \setminus \{0\}$$
$$y = a(b(x - c))^{-n} + d$$
$$\mathbb{D} = \mathbb{R} \setminus \{c\} \qquad \mathbb{W} = \mathbb{R} \setminus \{d\}$$

$$\begin{array}{ll} P_1: y = x^{-1} & \mathbb{D} = \mathbb{R} \setminus \{0\} & \mathbb{W} = \mathbb{R} \setminus \{0\} \\ P_4: y = (x+2)^{-1} + 3 & \mathbb{D} = \mathbb{R} \setminus \{-2\} & \mathbb{W} = \mathbb{R} \setminus \{3\} \\ P_6: y = 0, 2 * x^{-5} - 3 & \mathbb{D} = \mathbb{R} \setminus \{0\} & \mathbb{W} = \mathbb{R} \setminus \{-3\} \end{array}$$

Asymptoten

$$y=x^{-n}=\frac{1}{x^n}$$

Horizontale Asymptote (HA): y = 0

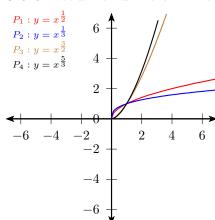
Vertikale Asymptote (VA): x = 0

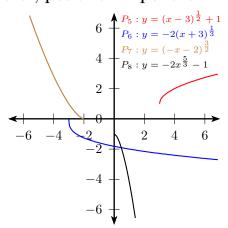
$$y = a(b(x-c))^{-n} + d$$

Horizontale Asymptote: y = d

Vertikale Asymptote: x = c

$$P_1: y = x^{-1}$$
 HA: $y = 0$ VA: $x = 0$
 $P_4: y = (x+2)^{-1} + 3$ HA: $y = 3$ VA: $x = -2$


$$P_6: y = 0, 2 * x^{-5} - 3$$
 HA: $y = -3$ VA: $x = 0$


Interaktive Inhalte:

Funktionsgraph

Wertetable

3.5.5 Wurzelfunktion - rationaler, positiver Exponent

Formen der Wurzelfunktion - positiver Exponent

Quadratwurzelfuktion: $y = x^{\frac{1}{2}} = \sqrt{x}$ x > 0

Grundfunktion: $y = x^{\frac{n}{m}} = \sqrt[m]{x^n}$ x > 0

Funktion mit Formvariablen:

 $y = a(x-c)^{\frac{n}{m}} + d = a \sqrt[m]{(x-c)^n} + d$ x-c > 0

 $y = a(b(x-c))^{\frac{n}{m}} + d = a \sqrt[m]{(b(x-c))^n} + d$ b(x-c) > 0

 $P_1: y = x^{\frac{1}{2}}$ $P_5: y = (x-3)^{\frac{1}{2}} + 1$

Verschiebung um 3 in x-Richtung und um 1 in y-Richtung

 $P_2: y = x^{\frac{1}{3}}$ $P_6: y = -2(x+3)^{\frac{1}{3}}$

Verschiebung um -3 in x-Richtung und Streckung um -2 in y-Richtung

 $P_3: y = x^{\frac{3}{2}}$ $P_7: y = (-x-2)^{\frac{3}{2}} = (-(x+2))^{\frac{3}{2}}$

Verschiebung um -2 in x-Richtung und Spiegelung an der y-Achse 5

 $P_4: y = x^{\frac{5}{3}}$ $P_8: y = -2x^{\frac{5}{3}} - 1$

Verschiebung um -1 in y-Richtung und Streckung um -2 in y-Richtung

Definitions- und Wertebereich

$$y = x^{\frac{n}{m}} = \sqrt[m]{x^n} \qquad \mathbb{D} = \mathbb{R}_0^+ \qquad \mathbb{W} = \mathbb{R}_0^+$$
$$y = a(b(x-c))^{\frac{n}{m}} + d = a\sqrt[m]{(b(x-c))^n} + d$$

$$b > 0$$
 $\mathbb{D} = [c; \infty[$

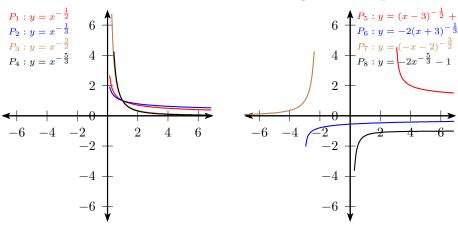
$$b < 0 \quad \mathbb{D} =]-\infty; c]$$

$$a > 0 \quad \mathbb{W} = [d; \infty[$$

$$a < 0 \quad \mathbb{W} =]-\infty; d]$$

$$P_2: y = x^{\frac{1}{3}} \qquad \mathbb{D} = \mathbb{R}_0^+ \qquad \mathbb{W} = \mathbb{R}_0^+$$

$$P_5: y = (x - 3)^{\frac{1}{2}} + 1 \qquad \mathbb{D} = [3; \infty[\quad \mathbb{W} = [1; \infty[$$


$$P_8: y = -2x^{\frac{5}{3}} - 1 \qquad \mathbb{D} = \mathbb{R}_0^+ \quad \mathbb{W} =] - \infty; -1]$$

Interaktive Inhalte:

Funktionsgraph

Funktionen Potenzfunktion

3.5.6 Wurzelfunktion - rationaler, negativer Exponent

Formen der Wurzelfunktion - negativer Exponent

$$y=x^{-\frac{1}{2}}=\frac{1}{\sqrt{x}} \qquad x>0$$
 Grundfunktion: $y=x^{-\frac{n}{m}}=\frac{1}{\sqrt[m]{x^n}} \qquad x>0$ Funktion mit Formvariablen: $y=a(x-c)^{-\frac{n}{m}}+d=\frac{a}{\sqrt[m]{(b(x-c))^n}}+d \qquad x-c>0$
$$y=a(b(x-c))^{-\frac{n}{m}}+d=a\frac{1}{\sqrt[m]{(b(x-c))^n}}+d \qquad b(x-c)>0$$

 $P_1:y=x^{-\frac{1}{2}}$ $P_5:y=(x-3)^{-\frac{1}{2}}+1$ Verschiebung um 3 in x-Richtung und um 1 in y-Richtung $P_2:y=x^{-\frac{1}{3}}$ $P_6:y=-2(x+3)^{-\frac{1}{3}}$ Verschiebung um -3 in x-Richtung und Streckung um -2 in y-Richtung $P_3:y=x^{-\frac{3}{2}}$ $P_7:y=(-x-2)^{\frac{3}{2}}=(-(x+2))^{-\frac{3}{2}}$ Verschiebung um -2 in x-Richtung und Spiegelung an der y-Achse $P_4:y=x^{-\frac{5}{3}}$ $P_8:y=-2x^{-\frac{5}{3}}-1$ Verschiebung um -1 in y-Richtung und Streckung um -2 in y-Richtung

Definitions- und Wertebereich

$$y = x^{-\frac{n}{m}} = \frac{1}{\sqrt[m]{x^n}}$$

$$\mathbb{D} = \mathbb{R}^+ \quad \mathbb{W} = \mathbb{R}^+$$

$$y = a(b(x-c))^{-\frac{n}{m}} + d = \frac{a}{\sqrt[m]{(b(x-c))^n}} + d$$

$$b > 0 \quad \mathbb{D} =]c; \infty[$$

$$b < 0 \quad \mathbb{D} =] - \infty; c[$$

$$a > 0 \quad \mathbb{W} =]d; \infty[$$

$$a < 0 \quad \mathbb{W} =] - \infty; d[$$

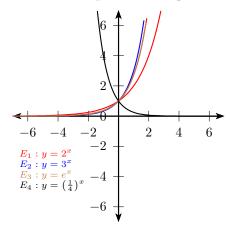
$$P_2: y = x^{-\frac{1}{3}} \quad \mathbb{D} = \mathbb{R}^+ \quad \mathbb{W} = \mathbb{R}^+$$

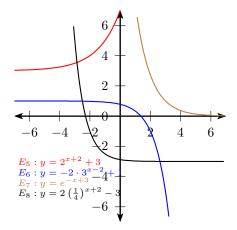
$$P_5: y = (x-3)^{-\frac{1}{2}} + 1 \quad \mathbb{D} =]3; \infty[\quad \mathbb{W} =]1; \infty[$$

$$P_8: y = -2x^{-\frac{5}{3}} - 1 \quad \mathbb{D} = \mathbb{R}^+ \quad \mathbb{W} =]-\infty; -1[$$

Asymptoten

$$y=x^{-\frac{n}{m}}=\frac{1}{\sqrt[m]{x^n}}$$
 Horizontale Asymptote (HA): $y=0$ Vertikale Asymptote (VA): $x=0$
$$y=a(b(x-c))^{-\frac{n}{m}}+d=\frac{a}{\sqrt[m]{(b(x-c))^n}}+d$$
 Horizontale Asymptote: $y=d$ Vertikale Asymptote: $x=c$


[
$$P_2: y = x^{-\frac{1}{3}}$$
 HA: $y = 0$ VA: $x = 0$
 $P_5: y = (x - 3)^{-\frac{1}{2}} + 1$ HA: $y = -1$ VA: $x = 3$
 $P_8: y = -2x^{-\frac{5}{3}} - 1$ HA: $y = -1$ VA: $x = 0$


Interaktive Inhalte:

Funktionsgraph

3.6 Exponentialfunktion

3.6.1 Graph und Eigenschaften

Formen der Exponentialfunktion

Grundfunktion: $y = q^x$ q > 0

Funktion mit Formvariablen:

$$y = a \cdot q^{(x-c)} + d$$

$$y = a \cdot q^{b(x-c)} + d \qquad q > 0$$

Funktionen mit der Basis: e = 2.718...

Grundfunktion: $y = e^x$

Funktion mit Formvariablen:

$$y = a \cdot e^{(x-c)} + d$$

$$y = a \cdot e^{b(x-c)} + d$$

 $E_1: y = 2^x$ $E_5: y = 2^{x+2} + 3$

Verschiebung um -2 in x-Richtung und um 3 in y-Richtung.

 $E_2: y = 3^x$ $E_6: y = -2 \cdot 3^{x-2} + 1$

Verschiebung um 2 in x-Richtung und um 1 in y-Richtung.

Streckung um -2 in y-Richtung. $E_3: y=e^x \qquad E_7: y=e^{-x+3}=e^{-(x-3)}$

Verschiebung um 3 in x-Richtung und Spiegelung an der y-Achse.

 $E_4: y = \left(\frac{1}{4}\right)^x = 4^{-x}$ $E_8: y = 2\left(\frac{1}{4}\right)^{x+2} - 3$

Verschiebung um -2 in x-Richtung und um -3 in y-Richtung. Streckung um 2 in y-Richtung

Definitions- und Wertebereich

$$y = e^{x} y = q^{x}$$

$$\mathbb{D} = \mathbb{R} \mathbb{W} = \mathbb{R}^{+}$$

$$y = a \cdot q^{b(x-c)} + d y = a \cdot e^{b(x-c)} + d$$

$$\mathbb{D} = \mathbb{R}$$

$$a > 0 \mathbb{W} = d; \infty[$$

$$E_{1}: y = 2^{x} \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = \mathbb{R}^{+}$$

$$E_{4}: y = \left(\frac{1}{4}\right)^{x} \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = \mathbb{R}^{+}$$

$$E_{5}: y = 2^{x+2} + 3 \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} =]3; \infty[$$

$$E_{6}: y = -2 \cdot 3^{x-2} + 1 \ \mathbb{D} = \mathbb{R} \qquad \mathbb{W} =] - \infty; 1[$$

$$E_{8}: y = 2\left(\frac{1}{4}\right)^{x+2} - 3 \ \mathbb{D} = \mathbb{R} \qquad \mathbb{W} =] - 3; \infty[$$

Asymptoten

a < 0

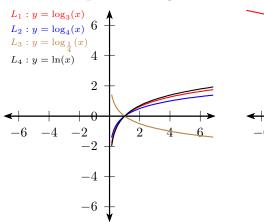
$$y = e^x$$
 $y = q^x$

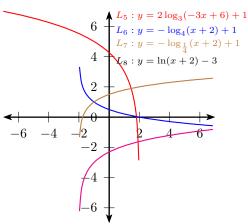
Horizontale Asymptote (HA):
$$y = 0$$

 $\mathbb{W} =]-\infty; d[$

$$y = a \cdot q^{b(x-c)} + d$$
 $y = a \cdot e^{b(x-c)} + d$

Horizontale Asymptote:
$$y = d$$


Interaktive Inhalte:


Funktionsgraph

Funktionen Logarithmusfunktion

3.7 Logarithmusfunktion

3.7.1 Graph und Eigenschaften

Formen der Logarithmusfunktion

Grundfunktion: $y = \log_q x$ q > 0

Funktion mit Formvariablen:

$$y = a \log_q (x - c) + d \qquad -\frac{d}{c} > 0$$

$$y = a \log_a (b(x - c)) + d$$

Funktionen mit der Basis: e = 2,718...

Grundfunktion: $y = \ln x$

Funktion mit Formvariablen:

$$y = a \ln(x - c) + d$$

$$y = a \ln (b(x - c)) + d$$

 $L_1: y = \log_3(x)$ $L_5: y = 2\log_3(-3x + 6) + 1 = 2\log_3(-3(x-2)) + 1$

Verschiebung um 2 in x-Richtung und um 1 in y-Richtung. Streckung um 2 in y-Richtung und um -3 in x-Richtung.

 $L_2: y = \log_4(x)$ $L_6: y = -\log_4(x+2) + 1$

Verschiebung um -2 in x-Richtung und um 1 in y-Richtung. Spiegelung an der x-Achse.

 $L_3: y = \log_{\frac{1}{2}}(x)$ $L_7: y = -\log_{\frac{1}{2}}(x+2) + 1$

Verschiebung um -2 in x-Richtung und um 1 in y-Richtung. Spiegelung an der x-Achse

 $L_4: y = \ln(x)$ $L_8: y = \ln(x+2) - 3$

Verschiebung um -2 in x-Richtung und um -3 in y-Richtung.

Definitions- und Wertebereich

$$\begin{array}{llll} y &=& \log_q x & y &=& \ln x & \mathbb{D} &=& \mathbb{R}^+ & \mathbb{W} &=& \mathbb{R} \\ y &=& a \log_q \left(b(x-c) \right) + d & y &=& a \ln \left(b(x-c) \right) + d \\ \\ \text{Definitionsbereich: } b(x-c) &>& 0 \\ b &>& 0 & \mathbb{D} =]c; \infty[\\ b &<& 0 & \mathbb{D} =]-\infty; c[\end{array}$$

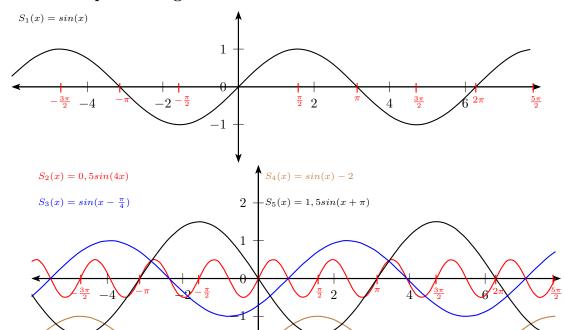
$$\begin{array}{lll} L_5: y = 2\log_3(-3x+6) & \mathbb{D} =] - \infty; 2[& \mathbb{W} = \mathbb{R} \\ L_6: y = -\log_4(x+2) + 1 & \mathbb{D} =] - 2; \infty[& \mathbb{W} = \mathbb{R} \\ L_8: y = \ln(x+2) - 3 & \mathbb{D} =] - 2; \infty[& \mathbb{W} = \mathbb{R} \\ \end{array}$$

Asymptoten

 $\mathbb{W} = \mathbb{R}$

$$y = \log_q x$$
 $y = \ln x$
Vertikale Asymptote (VA): $x = 0$
 $y = a \log_q (b(x-c)) + d$ $y = a \ln (b(x-c)) + d$
Vertikale Asymptote: $x = c$

[
$$L_5: y = 2\log_3(-3x+6)$$
 VA: $x = 2$
 $L_6: y = -\log_4(x+2) + 1$ VA: $x = -2$
 $L_8: y = \ln(x+2) - 3$ VA: $x = -2$


Interaktive Inhalte:

Funktionsgraph

Funktionen Sinusfunktion

3.8 Sinusfunktion

3.8.1 Graph und Eigenschaften

Formen der Sinusfunktion

Grundfunktion: $f(x) = \sin x$

Amplitude: 1 Periode: 2π

Funktion mit Formvariablen:

 $f(x) = a\sin(x - c) + d$

 $f(x) = a\sin(b(x-c) + d$

Amplitude: |a| Periode: $\frac{2\pi}{h}$

 $S_1(x) = \sin(x)$ $S_2(x) = 0.5\sin(4x)$

Stauchung um 0,5 in y-Richtung und $\frac{1}{4}$ in x-Richtung.

Amplitude: 0,5 Periode: $\frac{2\pi}{4}$

 $S_1(x) = \sin(x)$ $S_3(x) = \sin(x - \frac{\pi}{4})$

Verschiebung um $\frac{\pi}{4}$ in x-Richtung.

Amplitude: 1 Periode: 2π

 $S_1(x) = \sin(x) \qquad S_4(x) = \sin(x) - 2$

Verschiebung um -2 in y-Richtung

Amplitude: 1 Periode: 2π

 $S_1(x) = \sin(x)$ $S_5(x) = 1,5\sin(x+\pi)$

Verschiebung um $-\pi$ in x-Richtung und Streckung um 1,5 in

y-Richtung.

Amplitude: 1 Periode: 2π

Definitions- und Wertebereich

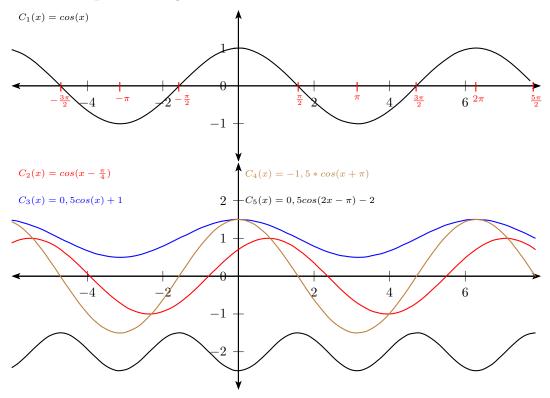
$$f(x) = \sin(x)$$

$$\mathbb{D} = \mathbb{R} \qquad \mathbb{W} = [1; -1]$$

$$f(x) = a\sin(b(x-c)) + d$$

$$\mathbb{D} = \mathbb{R}$$
 $\mathbb{W} = [d - a; d + a]$

$S_2(x) = 0,5sin(4x)$ $\mathbb{D} = \mathbb{R}$ $\mathbb{W} = [-0,5;+0,5]$ $S_3(x) = sin(x - \frac{\pi}{4})$ $\mathbb{D} = \mathbb{R}$ $\mathbb{W} = [-1;1]$ $S_4(x) = sin(x) - 2$ $\mathbb{D} = \mathbb{R}$ $\mathbb{W} = [-1;-3]$


Interaktive Inhalte:

Funktionsgraph

Funktionen Kosinusfunktion

3.9 Kosinusfunktion

3.9.1 Graph und Eigenschaften

Formen der Kosinusfunktion

Grundfunktion: $f(x) = \cos x$

Amplitude: 1 Periode: 2π

Funktion mit Formvariablen:

 $f(x) = a\cos(x - c) + d$

 $f(x) = a\cos(b(x-c)) + d$

Amplitude: |a| Periode: $\frac{2\pi}{h}$

 $C_1(x) = \cos(x)$ $C_2(x) = \cos(x - \frac{\pi}{4})$

Verschiebung um $\frac{\pi}{4}$ in x-Richtung.

Amplitude: 1 Periode: 2π

 $C_1(x) = \cos(x)$ $C_3(x) = 0,5\cos(x) + 1$

Verschiebung um 1 in y-Richtung und Stauchung um 0,5 in

y-Richtung.

Amplitude: 0,5 Periode: 2π

 $C_1(x) = \cos(x)$ $C_4(x) = -1, 5 * \cos(x + \pi)$

Verschiebung um $-\pi \mathrm{in}$ x-Richtung.

Amplitude: 1,5 Periode: 2π

 $C_1(x) = \cos(x)$ $C_5(x) = 0,5\cos(2x - \pi) - 2 =$

 $0,5\cos(2(x-\frac{\pi}{2}))-2$

Verschiebung um $\frac{\pi}{2}$ in x-Richtung und Streckung um 0,5 in

y-Richtung.

Amplitude: 0,5 Periode: Periode: $\frac{2\pi}{2}$

Definitions- und Wertebereich

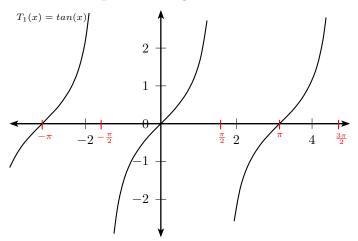
$$f(x) = \cos(x)$$

$$\mathbb{D} = \mathbb{R} \qquad \mathbb{W} = [1; -1]$$

$$f(x) = a\cos(b(x-c) + d$$

$$\mathbb{D} = \mathbb{R} \qquad \mathbb{W} = [d - a; d + a]$$

 $C_2(x) = \cos(x - \frac{\pi}{4}) \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = [-1; 1]$ $C_3(x) = 0, 5\cos(x) + 1 \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = [-0, 5; +0, 5]$ $C_5(x) = 0, 5\cos(2x - \pi) - 2 \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = [-1, 5; -2, 5]$


Interaktive Inhalte:

Funktionsgraph

Funktionen Tangensfunktion

3.10 Tangensfunktion

3.10.1 Graph und Eigenschaften

Formen der Tangenfunktion

Grundfunktion: $f(x) = \tan x$

Periode: π

Funktion mit Formvariablen:

 $f(x) = a \tan(x - c) + d$

 $f(x) = a \tan(b(x - c)) + d$

Periode: $\frac{\pi}{b}$

Definitions- und Wertebereich

$$f(x) = \tan x$$

$$\mathbb{D} = \mathbb{R} \backslash \{k \cdot \frac{\pi}{2}\} \qquad \mathbb{W} = \mathbb{R}$$

$$k \in \mathbb{Z}$$

$$f(x) = a \tan b(x - c) + d$$

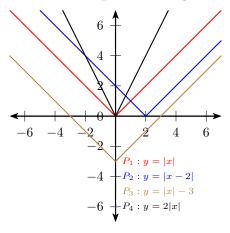
$$b(x-c) = k\frac{\pi}{2}$$

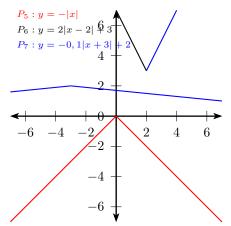
$$x = \frac{k\pi}{2b} + c$$

$$\mathbb{D} = \mathbb{R} \setminus \{ \frac{k\pi}{2b} + c \}$$

$$k \in \mathbb{Z}$$

Interaktive Inhalte:


Funktionsgraph


Wertetable

 $\mathbb{W}=\mathbb{R}$

Betragsfunktion 3.11

3.11.1 Graph und Eigenschaften

Formen der Betragsfunktion

Aufspalten der Beträge in einzelne Intervalle.

Betragsstriche sind nicht nötig, wenn der Term des Betrags positiv ist.

Betragsstriche sind nicht nötig, wenn der Term des Betrags negativ ist und dafür zusätzlich ein Minuszeichen vor den Term geschrieben wird.

Grundfunktion:

$$f(x) = |x| = \begin{cases} x & x > 0 \\ -x & x < 0 \\ 0 & x = 0 \end{cases}$$

Funktion mit Formvariablen:

$$f(x) = a|b(x-c)| + d = \begin{cases} a(b(x-c)) + d & x > c \\ -a(b(x-c)) + d & x < c \\ d & x = c \end{cases}$$

$$P_6: y = 2|x - 2| + 3 = \begin{cases} 2(x - 2) + 3 & x > 2\\ -2(x - 2) + 3 & x < 2\\ 3 & x = 2 \end{cases}$$
$$y = \begin{cases} 2x - 1 & x > 2\\ -2x + 7 & x < 2\\ 3 & x = 2 \end{cases}$$

Definitions- und Wertebereich

$$f(x) = |x|$$

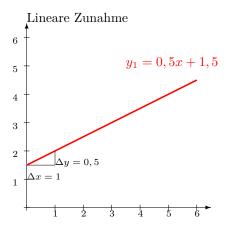
$$\mathbb{D} = \mathbb{R} \qquad \mathbb{W} = \mathbb{R}_0^+$$

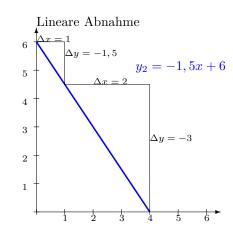
$$f(x) = a|b(x - c)| + d \mathbb{D} = \mathbb{R}$$

$$a > 0 \quad \mathbb{W} = [d; \infty[$$

$$a < 0 \quad \mathbb{W} =] - \infty; d]$$

Interaktive Inhalte:


Funktionsgraph


Wertetable

Funktionen Wachstumsfunktionen

3.12 Wachstumsfunktionen

3.12.1 Lineares Wachstum

• Zum Anfangswert t wird pro Zeiteinheit der gleiche Wert maddiert oder subtrahiert.

• Lineare Funktion: $y = m \cdot x + t$

x - Zeit in Stunden, Minuten usw.

y - Funktionswert nach der Zeit x

t - Anfangswert

m - konstante Änderungsrate, Steigung

m > 0 positives lineares Wachstum (Zunahme)

m < 0 negatives lineares Wachstum (Abnahme)

m = 0 Nullwachstum

• Änderungsrate - Wachstumsgeschwindigkeit:

 $m = \frac{\Delta y}{\Delta x}$

• Umformungen: $y = m \cdot x + t$

$$x = \frac{y-t}{m}$$
 $t = y - m \cdot x$ $m = \frac{y-t}{x}$

• Schreibweisen

Funktion	Änderungsrate	Variable	Anfangswert
$y = m \cdot x + t$	m	\mathbf{x}	t
$y = a \cdot x + b$	a	\mathbf{x}	b
$y = a + b \cdot x$	b	x	a
$f(x) = a \cdot x + f_0$	a	x	f_0
$N(t) = a \cdot t + N_0$	a	t	N_0
$B(t) = k \cdot t + B_0$	a	x	B_0
$K(t) = q \cdot t + K_0$	q	t	K_0

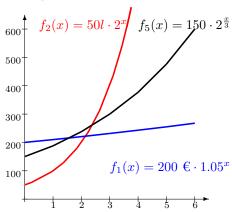
Lineare Zunahme

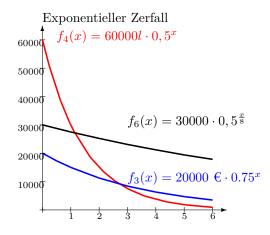
Ein Wasserbecken entält 1,5 Liter Wasser. Pro Minute fließen 0,5 Liter zu.

$x_1 =$	Minut	en $y_1 =$	Liter	t = 1, 5	
x_1	0	1	2	3	4
y_1	1,5	1,5+0,5	2 + 0, 5	2, 5 + 0, 5	3 + 0, 5
y_1	1,5	2	2,5	3	3, 5
m =	$\frac{\Delta y}{\Delta x} =$	$\frac{2-1,5}{1-0} = \frac{0,5}{1}$	= 0, 5		
y = 0	0.5x +	$\cdot 1, 5$			

Lineare Abnahme

Ein Wasserbecken entält 6 Liter Wasser. Pro Minute fließen 1,5 Liter ab.


Interaktive Inhalte:


Funktionsgraph Wertetable Eigenschaften $y = m \cdot x + t$ $m = \frac{y-t}{x}$ $x = \frac{y-t}{m}$ $t = y - m \cdot x$

Funktionen Wachstumsfunktionen

3.12.2 Exponentielles Wachstum

Exponentielles Wachstum

Wachstumsfaktor pro Zeiteinheit

- Der Anfangswert a wird pro Zeiteinheit mit den gleichen Faktor q multipliziert.
- Funktion: $f(x) = a \cdot q^x$

x - Zeit in Stunden, Minuten usw.

y = f(x) - Funktionswert nach der Zeit x

a - Anfangswert

q - Wachstumsfaktor pro Zeiteinheit

exponentielles Wachstum

0 < q < 1exponentieller Zerfall

q = 0Nullwachstum

•Prozentuale Zunahme p pro Zeiteinheit:

$$f(x) = a \cdot (1 + \frac{p}{100})^x = a \cdot q^x$$

$$q = 1 + \frac{p}{100} \qquad p = (q - 1) \cdot 100$$

•Prozentuale Abnahme p pro Zeiteinheit:

$$f(x) = a \cdot (1 - \frac{p}{100})^x = a \cdot q^x$$

$$q = 1 - \frac{p}{100} \qquad p = (1 - q) \cdot 100$$

- Lokale Änderungsrate Wachstumsgeschwindigkeit:
- 1. Ableitung: $f'(x) = a \cdot ln(q) \cdot q^x$
- Umformungen y = f(x)

$$y = a \cdot q^x$$
 $a = \frac{y}{q^x}$ $x = log_q(\frac{y}{a})$ $q = \sqrt[x]{\frac{y}{a}}$

• Schreibweisen

Funktion	Wachstumsfaktor	Variable	Anfangswert
$f(t) = a \cdot q^t$	q	\mathbf{t}	a
$y = a \cdot b^x$	b	x	a
$y = b \cdot a^t$	a	t	b
$K(t) = K_0 \cdot q^t$	q	t	N_0
$N(t) = N_0 \cdot q^t$	q	t	N_0

Exponentielle Zunahme

Ein Kapital von 200 € wird mit 5 % (pro Jahr) verzinst.

$$x_{1} = \text{Jahr} \qquad y_{1} = \epsilon \qquad p=5 \qquad q = 1 + \frac{5}{100} = 1,05 \qquad a = 200 \epsilon$$

$$\begin{vmatrix} x_{1} & 0 & 1 & 2 & 3 & 4 \\ y_{1} & 200 & 200 \cdot 1,05 & 210 \cdot 1,05 & 220,5 \cdot 1,05 & 231,52 \cdot 1,05 \\ y_{1} & 200 & 210 & 220,5 & 231,52 & 243,1 \end{vmatrix}$$

$$f_{1}(x) = 200\epsilon \cdot (1 + \frac{5}{2})^{x} \qquad f_{2}(x) = 200\epsilon \cdot 1,05^{x}$$

 $f_1(x) = 200 \cdot \left(1 + \frac{5}{100}\right)^x$ $f_1(x) = 200 \in 1,05^x$ Kapital nach 10 Jahren: $f_1(10) = 200 \in \{1, 05^{10} = 325, 78 \in \}$

In jeder Minute verdoppelt sich die Wassermenge in einem Wasserbecken. Nach 4 Minuten enthält es 800 Liter Wasser.

q = 2 f(4) = 800

Prozentuale Zunahme: $p = (2-1) \cdot 100\% = 100\%$ Anfangswert: $a = \frac{y}{q^x} = \frac{800}{2^4} = 50l$ $f_2(x) = 50 \in 2^x$ $f_2(x) = 50 \cdot (1 + \frac{100}{100})^x$

$$f_2(x) = 50 \in 2^x$$
 $f_2(x) = 50 \cdot (1 + \frac{100}{100})^x$

Exponentielle Abnahme

 $f_4(x) = 60000l \cdot 0, 5^x$

Ein Auto kostet 20000 €. Der Wertverlust beträgt 25 % pro Jahr. x= Jahre $y_3=$ €

		00				
\boldsymbol{x}	0	1	2	3	4	
y_3	20000	$20000 \cdot 0,75$	$25000 \cdot 0,75$	$11250 \cdot 0, 5$	$8437, 50 \cdot 0, 75$	
112	20000	25000	11250	8437.50	6328.12	

 $f_3(x) = 200000 \in (1 - \frac{25}{100})^x$ $f_3(x) = 200000 \in (0, 75^x)$ Wann ist das Auto nur noch $1000 \in \text{Wert}$? $f_3(x) = \log_q(\frac{y}{a}) = \log_0 75(\frac{10000}{200000}) = 19,41 \text{ Jahren}$

Ein Wasserbecken enthält 60000 Liter Wasser.

Pro Minute halbiert sich die Wassermenge.

 x_4 = Minuten $y_4 = \text{Liter}$ $x_4 \mid 0$ y_4 60000 60000 · 0, 5 $30000 \cdot 0, 5 \quad 15000 \cdot 0,$ 15000 y₄ 60000 30000 7500 3750

 $f_4(x) = 60000l \cdot (1 - 1)$

Wachstumsfaktor pro Periode

- Der Anfangswert a wird pro Periode mit den gleichen Faktor q multipliziert.
- Funktion: $f(x) = a \cdot q^{\frac{x}{T}}$
- x Zeit in Stunden, Minuten usw.
- y = f(x) Funktionswert nach der Zeit x
- a Anfangswert
- T Periode, Zeitintervall
- q Wachstumsfaktor pro Periode
- q > 1 exponentielles Wachstum
- 0 < q < 1 exponentieller Zerfall
- q = 0 Nullwachstum
- Prozentuale Zunahme p pro Periode T:

$$f(x) = a \cdot (1 + \frac{p}{100})^{\frac{x}{T}}$$

$$q = 1 + \frac{p}{100} \qquad p = (q - 1) \cdot 100$$

• Prozentuale Abnahme pro Periode T:

$$f(x) = a \cdot (1 - \frac{p}{100})^{\frac{x}{T}}$$

$$q = 1 - \frac{p}{100} \qquad p = (1 - q) \cdot 100$$

• Umformungen y = f(x)

$$y = a \cdot q^{\frac{x}{T}}$$
 $a = \frac{y}{q^{\frac{x}{T}}}$ $x = T \cdot log_q(\frac{y}{a})$ $q = \frac{x}{\sqrt[T]{\frac{y}{a}}}$

Exponentielles Wachstum

Zu Beginn der Beobachtung sind 150 Bakterien vorhanden. Die Anzahl der Bakterien verdoppelt sich alle 3 Stunden.

$$q=2$$
 $T=3$ $a=150$

 x_5 = Stunden y_5 =Anzahl der Bakterien

x_5	0	3	6	9	12	
y_5	150	$150 \cdot 2$	$300 \cdot 2$	$600 \cdot 2$	$1200 \cdot 2$	
y_1	150	300	600	1200	2400	

 $f_5(x) = 150 \cdot 2^{\frac{x}{3}}$

Anzahl der Bakterien nach 2 Stunden:

$$f_5(2) = 150 \cdot 2^{\frac{2}{3}} = 238$$

Jod 131 hat eine Halbwertszeit von 8 Tagen. Am Anfang sind 30000 Atome vorhanden.

$$q=0.5$$
 $T=8$ $a=30000$

 x_6 = Tage y_6 = Anzahl der Atome

x_6	0	8	16	24	32
y_6	30000	$30000 \cdot 0, 5$	$15000 \cdot 0, 5$	$7500 \cdot 0, 5$	$37500 \cdot 0, 5$
y_6	30000	15000	7500	3750	1875
$f_6(x)$	= 3000	$0.0 \cdot 0.5^{\frac{x}{8}}$	$f_6(x) = 30$	$0000 \cdot (1 - \cdot)$	$\frac{50}{8}$

Wachstumskonstante und e-Funktion

•Funktion: $f(x) = a \cdot e^{k \cdot x}$

x - Zeit in Stunden, Minuten usw.

f(x) - Funktionswert nach der Zeit x

a - Anfangswert

 ${\bf k}$ - Wachstumskonstante

exponentielles Wachstum

k < 0exponentieller Zerfall

• Wachstumsfaktor q pro Zeiteinheit:

$$f(x) = a \cdot q^x = a \cdot e^{\ln(q^x)} = a \cdot e^{\ln(q) \cdot x} = a \cdot e^{k \cdot x}$$

$$k = \ln(q) \qquad q = e^k$$

• Wachstumsfaktor q pro Periode T:

$$\begin{split} f(x) &= a \cdot q^{\frac{x}{T}} = a \cdot e^{\ln(q^{\frac{x}{T}})} = a \cdot e^{\ln(q) \cdot \frac{x}{T}} = a \cdot e^{k \cdot x} \\ k &= \frac{\ln(q)}{T} \qquad q = e^{k \cdot T} \end{split}$$

- Lokale Änderungsrate Wachstumsgeschwindigkeit:
- 1. Ableitung: $f'(x) = a \cdot k \cdot e^{k \cdot x} = k \cdot f(x)$
- Umformungen: y = f(x)

$$y = a \cdot e^{k \cdot x}$$
 $a = \frac{y}{e^{k \cdot x}}$ $x = \frac{\ln(\frac{y}{a})}{k}$ $k = \frac{\ln(\frac{y}{a})}{x}$

Wachstumkonstante?

$$f_1(x) = 200 \in \cdot 1,05^x$$

$$k = ln(q) = ln(1,05) = 0,0488$$

 $f_1(x) = 2006 \cdot e^{ln(1,05)x}$ $f_1(x) = 2006 \cdot e^{0,0488x}$

$$f_1(10) = 200 \in e^{\ln(1,05)10} = 325,78$$

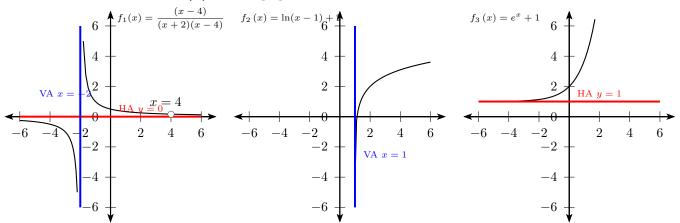
Wachstumkonstante?

$$f_6(x) = 30000 \cdot 0, 5^{\frac{x}{8}}$$

$$k = \frac{\ln(q)}{T} = \frac{\ln(0.5)}{9} = -0.087$$

$$k = \frac{\ln(q)}{T} = \frac{\ln(0.5)}{8} = -0.087$$

$$f_6(x) = 30000 \cdot e^{\frac{\ln(0.5)}{8}x} \qquad f_6(x) = 30000 \cdot e^{-0.087x}$$


Interaktive Inhalte:

$$\boxed{p = (q-1) \cdot 100} \boxed{q = 1 + \frac{p}{100}} \boxed{f(x) = a \cdot q^x} \boxed{a = \frac{f(x)}{q^x}} \boxed{x = log_q(\frac{y}{a})} \boxed{q = \sqrt[x]{\frac{y}{a}}}$$

4 Analysis

4.1 Grenzwert - Stetigkeit

4.1.1 Grenzwert von f(x) für x gegen x0

 \bullet Linksseitiger Grenzwert (LGW) von f(x) geht gegen eine Konstante (konvergiert)

$$\lim_{x \to x_0^-} f(x) = a \text{ oder } \lim_{x \xrightarrow{\leq} x_0} f(x) = a$$

 \bullet Rechtsseitiger Grenzwert (RGW) von f(x) geht gegen eine Konstante (konvergiert)

$$\lim_{x \to x_0^+} f(x) = a \text{ oder } \lim_{x \xrightarrow{>} x_0} f(x) = a$$

• Grenzwert von f(x) existiert

linksseitiger Grenzwert = rechtsseitiger Grenzwert

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = a$$

$$\lim_{x \to x_0} f(x) = a$$

• Linksseitiger Grenzwert von f(x) geht gegen Unendlich (bestimmt divergiert)

$$\lim_{x \to x_0^-} f(x) = \pm \infty$$

• Rechtsseitiger Grenzwert von f(x) geht gegen Unendlich (bestimmt divergiert)

$$\lim_{x \to x_0^+} f(x) = \pm \infty$$

 \Rightarrow vertikale Asymptote - Polstelle an der Stelle $x=x_0$

$$f_1(x) = \frac{(x-4)}{(x+2)(x-4)}$$
 $\mathbb{D} = \mathbb{R} \setminus \{-2; 4\}$

Linksseitiger Grenzwert von f(x) für x gegen 4

$x \to 4^-$	$f(x) o \frac{1}{6}$	(4)
3,99	0,166945	$\lim \frac{(x-4)}{(x-2)(x-4)} =$
3,999	0,166694	$\lim_{x \to 4^{-}} \frac{(x-4)}{(x+2)(x-4)} =$
3,9999	0,166669	$\lim_{x \to 4^{-}} \frac{1}{(x+2)} = \frac{1}{6}$
3,99999	0,166667	$x \rightarrow 4 (x + 2)$

Rechtsseitiger Grenzwert von f(x) für x gegen 4

$x \to 4^+$	$f(x) o \frac{1}{6}$	(4)
4,01	0, 166389	$\lim_{x \to 2} \frac{(x-4)}{(x+2)(x+4)} =$
4,001	0, 166639	$\lim_{x \to 4^+} (x+2)(x-4)$
4,0001	0,166664	$\lim_{x \to 4^+} \frac{1}{(x+2)} = \frac{1}{6}$
4,00001	0,166666	$x \rightarrow 4$, $(x + 2)$

 $\lim_{x\to 4} f(x) = \frac{1}{6} \Rightarrow$ Stetig behebbare Definitionslücke Linksseitiger Grenzwert von f(x) für x gegen -2

$x \rightarrow -2^-$	$f(x) \to -\infty$	(, 4)
-2,01	-100	$\lim \frac{(x-4)}{(x-4)^2} =$
-2,001	-1000	$\lim_{x \to -2^{-}} \frac{(x-1)}{(x+2)(x-4)} =$
-2,0001	-10000	$\lim_{x \to -2^-} \frac{1}{(x+2)} = -\infty$
_2 00001	_00000 000000	$x \rightarrow -2 (w + 2)$

Rechtsseitiger Grenzwert von f(x) für x gegen -2

~ \ 2±	f(m) \ 20	
$x \rightarrow -2$	$f(x) \to \infty$	(m 4)
-1,99	100	$\lim_{x \to 0} \frac{(x-4)}{(x+2)(x+4)}$
-1,999	1000	$\lim_{x \to -2^+} \frac{(x-1)}{(x+2)(x-4)} =$
-1,9999	10000	$\lim_{x \to -2^+} \frac{1}{(x+2)} = \infty$
_1 99999	99999 999999	1 2 · (w 2)

$$\lim_{x\to 1^+} \ln(x-1) + 2 = -\infty$$
 Vertikale Asymptote (Polstelle): $x=1$

Interaktive Inhalte:

 $\overline{Grenzwerte}$

Grenzwert von f(x) für x gegen Unendlich

• Grenzwert von f(x) geht gegen eine Konstante (konvergiert)

$$\lim_{x \to \pm \infty} f(x) = a$$

 $\Rightarrow \text{horizontale Asymptote } y = a$

• Grenzwert von f(x) geht gegen Unendlich (bestimmt divergiert)

$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

Funktion:

$$f\left(x\right) = -x^3$$

Grenzwert von f(x) für x gegen ∞ und gegen $-\infty$

$x \to \infty$	$f(x) \to -\infty$	$x \to -\infty$	$f(x) \to \infty$
10	-1000	-10	1000
100	-1000000	-100	1000000
1000	-1000000000	-1000	1000000000
10000	-10000000000000	-10000	10000000000000

$$\lim_{x \to \infty} -x^3 = [-1 \cdot \infty^3] = -\infty$$

$$\lim_{x \to \infty} -x^3 = [-1 \cdot \infty^3] = -\infty$$
$$\lim_{x \to \infty} -x^3 = [-1 \cdot (-\infty)^3] = \infty$$

$$f(x) = \frac{(x-4)}{(x+2)(x-4)} \qquad \mathbb{D} = \mathbb{R} \setminus \{-2; 4\}$$

Grenzwert von f(x) für x gegen ∞ und gegen $-\infty$

$x \to \infty$	$f(x) \to 0$	$x \to -\infty$	$f(x) \to 0$
10	0,083333	-10	-0,125
100	0,009804	-100	-0,010204
1000	0,000998	-1000	-0,001002
10000	0,0001	-10000	-0,0001
100000	0,00001	-100000	-0,00001

$$f_1(x) = \frac{(x-4)}{(x+2)(x-4)} = \frac{x-4}{x^2 - 2x - 4} = \frac{x(1-\frac{4}{x})}{x^2(1-\frac{2}{x}-\frac{8}{x^2})}$$

$$\lim_{x \to \pm \infty} \frac{x(1 - \frac{4}{x})}{x^2(1 - \frac{2}{x} - \frac{8}{x^2})} = \lim_{x \to \pm \infty} \frac{x}{x^2} = \lim_{x \to \pm \infty} \frac{1}{x} = 0$$

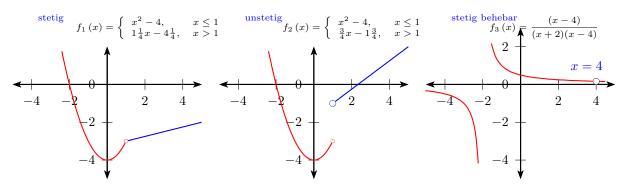
Horizontale Asymptote: y = 0

$$f_2(x) = \ln(x-1) + 2$$

 $\lim_{x \to \infty} \ln(x-1) + 2 = \infty$

$$f_3\left(x\right) = e^x + 1$$

$$\lim e^x + 1 = \infty$$


$$\lim_{x \to -\infty} e^x + 1 = 1$$

Horizontale Asymptote: y = 1

Interaktive Inhalte:

Grenzwerte

4.1.3 Stetigkeit

Analysis Grenzwert - Stetigkeit

 \bullet Ein Funktion ist an der Stelle x_0 stetig, wenn der linksseitiger GW = rechtsseitiger GW = Funktionswert f(x) $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$

- Stetige Funktionen
- Ganzrationale Funktionen
- Exponentialfunktionen
- Sinus- und Kosinusfunktion
- Stetige Funktionen, bei denen die Unstetigkeitsstellen aus dem Definitionsbereich ausgeschlossen sind:
- Gebrochenrationale Funktionen
- Logarithmusfunktionen
- Tangensfunktion
- Abschnittsweise definierte Funktionen müssen an den Schnittstellen auf Stetigkeit untersucht werden.
- Stetig behebbare Definitionslücke x_0
- linksseitiger GW = rechtsseitiger GW

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

$$f_{1}\left(x\right) = \begin{cases} x^{2} - 4, & x \leq 1\\ 1\frac{1}{4}x - 4\frac{1}{4}, & x > 1 \end{cases}$$
 LGW:
$$\lim_{x \to 1^{-}} x^{2} - 4 = -3$$

RGW: $\lim_{x \to 0} 1\frac{1}{4}x - 4\frac{1}{4} = -3$

FW: $f_1(1) = 1^2 - 4 = -3$

 $LGW = RGW = FW \Rightarrow$

ist stetig an der Stelle $x_0 = 1$

 $f_2(x) = \begin{cases} x^2 - 4, & x \le 1\\ \frac{3}{4}x - 1\frac{3}{4}, & x > 1 \end{cases}$

LGW: $\lim_{}^{4} x^2 - 4 = -3$

RGW: $\lim_{4} \frac{3}{4}x - 1\frac{3}{4} = -1$

FW: $f_1(1) = 1^2 - 4 = -3$

 $LGW \neq RGW \neq FW \Rightarrow$

ist unstetig an der Stelle $x_0 = 1$

$$f_3(x) = \frac{(x-4)}{(x+2)(x-4)} = \frac{1}{(x+2)}$$
 $\mathbb{D} = \mathbb{R} \setminus \{-2; 4\}$

 $f_3(x)$ stetig in D

RGW: $\lim_{x \to 4^+} \frac{1}{(x+2)} = \frac{1}{6}$ LGW: $\lim_{x \to 4^-} \frac{1}{(x+2)} = \frac{1}{6}$

 \Rightarrow stetig behebbare Definitionslücke: $x_0 = 4$

Stetige Fortsetzung von $f_2(x)$

$$f_4(x) = \frac{1}{(x+2)}$$
 $\mathbb{D} = \mathbb{R} \setminus \{-2\}$

Interaktive Inhalte:

Grenzwerte

4.1.4 Rechenregeln

Wichtige Grenzwerte

$$\lim_{x \to 0} a \cdot x = 0 \qquad \lim_{x \to 0} \frac{a}{x} = \infty$$

$$\lim_{x \to \infty} a \cdot x = \infty \qquad \lim_{x \to \infty} \frac{a}{x} = 0$$

$$\lim_{x \to \infty} e^x = \infty \qquad \lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to 0^+} \ln x = -\infty \qquad \lim_{x \to \infty} \ln x = \infty$$

$$\begin{array}{ll} \lim_{x\to 0} 4\cdot x = 0 & \lim_{x\to 0} \frac{5}{x} = \infty \\ \lim_{x\to \infty} 7\cdot x = \infty & \lim_{x\to \infty} \frac{-3}{x} = 0 \\ \lim_{x\to \infty} 2e^x = \infty & \lim_{x\to -\infty} -3e^x = 0 \\ \lim_{x\to 0^+} 3\ln x = -\infty & \lim_{x\to \infty} 6\ln x = \infty \end{array}$$

Rechenregeln

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = f \qquad \lim_{\substack{x \to x_0 \\ x \to x_0}} g(x) = g$$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} (f(x) + g(x)) = \lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) + \lim_{\substack{x \to x_0 \\ x \to x_0}} g(x) = f + g$$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} (f(x) - g(x)) = \lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) - \lim_{\substack{x \to x_0 \\ x \to x_0}} g(x) = f - g$$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} (f(x) \cdot g(x)) = \lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) \cdot \lim_{\substack{x \to x_0 \\ x \to x_0}} g(x) = f \cdot g$$

$$g(x) \neq 0 \qquad \lim_{\substack{x \to x_0 \\ x \to x_0}} \frac{f(x)}{g(x)} = \lim_{\substack{x \to x_0 \\ x \to x_0}} \frac{f(x)}{g(x)} = \frac{f}{g}$$

$$\lim_{x\to\pm\infty}\frac{1-\frac{4}{x}}{x(1-\frac{2}{x}-\frac{8}{x^2})}=0$$
 Zähler:
$$\lim_{x\to\pm\infty}\frac{4}{x}=0\qquad\lim_{x\to\pm\infty}1-0=1$$
 Nenner:
$$\lim_{x\to\pm\infty}\frac{8}{x^2}=0\qquad\lim_{x\to\pm\infty}\frac{2}{x}=0\qquad\lim_{x\to\pm\infty}x(1-0-0)=\infty$$
 Zähler durch Nenner:
$$\frac{1}{\infty}=0$$

Unbestimmte Ausdrücke

Typ 1:
$$\lim \frac{f(x)}{g(x)} = \frac{0}{0}$$
 Typ 2: $\lim \frac{f(x)}{g(x)} = \frac{\pm \infty}{\pm \infty}$

Regel von L'Hospital

Zähler und Nenner getrennt ableiten, bis man den Grenzwert berechnen kann

wert berechnen kann.
$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)} = \lim \frac{f''(x)}{g''(x)} \dots$$

Typ 3: $\lim f(x) \cdot g(x) = 0 \cdot \pm \infty$

- Umformen in Typ 1 oder 2 und danach L'Hospital anwenden

Typ 4:
$$\lim (f(x) - g(x)) = \infty - \infty$$

- Brüche auf gemeinsamen Hauptnenner bringen
- Faktorisieren

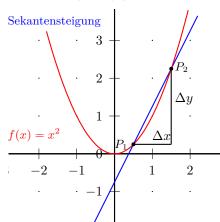
Typ 1:
$$\frac{0}{0}$$

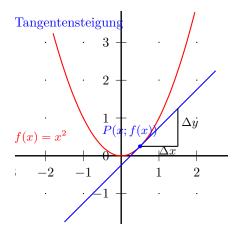
$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = \cos 0 = 1$$
Typ 2: $\frac{\infty}{\infty}$

$$\lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2 \cdot x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x} = \frac{2}{\infty} = 0$$

$$\begin{aligned} & \text{Typ } 3 \colon \infty \cdot 0 \\ & \lim_{x \to \infty} x \cdot e^{-x} = \lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0 \\ & \lim_{x \to 0^+} x \cdot \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = -x = 0 \\ & \text{Typ } 4 \colon \infty - \infty \\ & \lim_{x \to \infty} x^2 - x = \lim_{x \to \infty} x(x - 1) = \infty \\ & \lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{x}\right) = \lim_{x \to 0} \frac{1 - x}{x^2} = \infty \end{aligned}$$

Wichtige unbestimmte Ausdrücke


$$\lim_{x \to \infty} \frac{x^n}{e^x} = 0 \qquad \lim_{x \to \infty} \frac{e^x}{x^n} = \infty$$
$$\lim_{x \to \infty} \frac{x^n}{\ln x} = \infty \qquad \lim_{x \to \infty} \frac{\ln x}{x^n} = 0$$


$$\lim_{x \to \infty} \frac{-4x^5}{e^x} = 0 \quad \lim_{x \to \infty} \frac{e^x}{x^3} = \infty$$
$$\lim_{x \to \infty} \frac{2x^3}{\ln x} = \infty \quad \lim_{x \to \infty} \frac{4\ln x}{x} = 0$$

Analysis Differentialrechnung

Differentialrechnung

4.2.1 Definition

Sekantensteigung

Eine Gerade schneidet eine Funktion in den Punkten

 $P_1(x_0; f(x_0))$ und $P_2(x; f(x))$.

Steigung der Sekante an der Stelle x_0

$$m = \frac{\Delta y}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$$
$$\Delta x = h \qquad x = x_0 + h$$
$$m = \frac{f(x_0 + h) - f(x_0)}{h}$$

Sekantensteigung = Differenzenquotient = Mittlere Änderungsrate

Für kleine h ist die Sekantensteigung ≈ Tangentensteigung $m \approx f'(x_0)$

 $f(x) = x^2$ Die Sekantensteigung m durch die Punkte $P_1(0.5;0,25)$ $P_2(1,5;2,25)$ $m = \frac{f(x) - f(x_0)}{f(x_0)}$

$$m = \frac{f(x) - f(x_0)}{x - x_0}$$

$$m = \frac{2,25 - 0,25}{1,5 - 0,5} = 2$$

Die Sekantensteigung m
 an der Stelle $x_0=0,5$ und h=1

$$m = \frac{f(x_0 + h) - f(x_0)}{h}$$

$$m = \frac{f(0, 5 + 1) - f(0, 5)}{2.25 - 0.25}$$

$$m = \frac{2.25 - 0.25}{1} = 2$$

Die Sekantensteigung m an der Stelle $x_0 = 0,25$ und h = 0,001

$$m = \frac{f(x_0 + h) - f(x_0)}{h}$$

$$m = \frac{f(0, 5 + 0, 001) - f(0, 5)}{0, 001}$$

$$m = \frac{0, 251001 - 0, 25}{0, 001} = 1,001$$

$$m \approx f'(0, 5) = 1$$

1. Ableitung - Differentialquutient

Die Ableitung von f(x) ist die Steigung des Graphen der

Funktion f(x) an der Stelle x_0 .

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
$$x = x_0 + h$$
$$f(x_0 + h) - f(x_0 + h) = f(x_0 + h) - f(x_0 + h)$$

$$f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

 $f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ 1. Ableitung = Steigung der Tangente = Steigung der

Funktion f(x)=lokale (momentane) Änderungsrate

Die Ableitung von f(x) an einer beliebigen Stelle x

$$f'(x) = \lim_{h \to 0} \frac{\ddot{f}(x+h) - f(x)}{h}$$

Die 1. Ableitung von
$$f(x) = x^2$$
 an der Stelle $x_0 = 0, 5$

$$f'(1) = \lim_{h \to 0} \frac{(0, 5+h)^2 - 0, 5^2}{h}$$

$$f'(1) = \lim_{h \to 0} \frac{0, 25+h+h^2 - 0, 25}{h}$$

$$f'(1) = \lim_{h \to 0} \frac{h(1+h)}{h}$$

$$f'(1) = \lim_{h \to 0} 1+h=1$$

$$f'(1) = \lim_{h \to 0} \frac{0.25 + h + h^2 - 0.25}{h}$$

$$f'(1) = \lim_{h \to 0} \frac{h(1+h)}{h}$$

Die Ableitung von $f(x) = x^2$ an einer beliebigen Stelle x

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{x^2 + 2hx + h^2 - x^2}{h}$$

Die Ableitung von
$$f(x) = x^2$$
 an einer be $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$

$$f'(x) = \lim_{h \to 0} \frac{x^2 + 2hx + h^2 - x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{h(2x+h)}{h} = \lim_{h \to 0} 2x + h = 2x$$

$$f'(x) = 2x$$

$$f'(0,5) = 1$$

$$f'(x) = 2x$$

$$f'(0,5) = 1$$

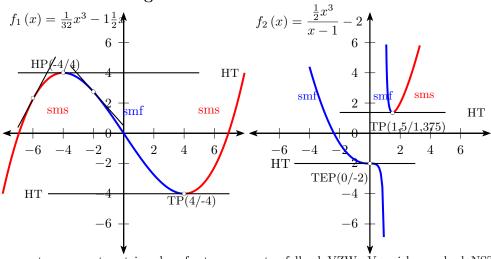
Analysis Differential rechnung

2. Ableitung

Die Ableitung der 1. Ableitung ist die 2. Ableitung.

Die 2. Ableitung gibt die Krümmung einer Funktion f(x) an der Stelle x_0 an.

$$f(x) = -x^4 + 3x^2 + 2x$$


$$f'(x) = -4x^3 + 6x + 2$$

$$f''(x) = -12x^2 + 6$$

Interaktive Inhalte:

Tangent ensteigung

4.2.2 1. Ableitung - Monotonie - Extremwerte

sms - streng monoton steigend; smf - streng monoton fallend; VZW - Vorzeichenwechsel; NST - Nullstelle; HP - Hochpunkt (Maximum); TP - Tiefpunkt (Minimum); HT - horizontale Tangente; TEP - Terrassenpunkt

Steigung von $f(x_0)$ an der Stelle x_0

$$m = f'(x_0)$$

•Funktion $f(x) = \frac{1}{32}x^3 - 1\frac{1}{2}x$ •1. Ableitungen $f'(x) = \frac{3}{32}x^2 - 1\frac{1}{2} = \frac{3}{32}(x+4)(x-4)$ Steigung an der Stelle x = -6 $m = f'(-6) = 1\frac{7}{8}$ Steigung an der Stelle x = -2 $f'(-2) = -1\frac{1}{8}$

Stelle x_0 an der $f(x_0)$ die Steigung m besitzt

$$f'(x)=m$$

Bei horizontalen Tangenten ist die Steigung Null.
$$f'(x)=0$$

•1. Ableitungen $f'(x) = \frac{3}{32}x^2 - 1\frac{1}{2}$ Horizontale Tangente $\frac{3}{32}x^2 - 1\frac{1}{2} = 0 \qquad / + 1\frac{1}{2}$ $\frac{3}{32}x^2 = 1\frac{1}{2} \qquad / : \frac{3}{32}$ $x^2 = \frac{1\frac{1}{2}}{\frac{3}{32}}$ $x = \pm\sqrt{16}$ $x_1 = 4 \qquad x_2 = -4$

Analysis Differentialrechnung

Monotonieverhalten

 $f'(x) \ge 0$ monoton steigend streng monoton steigend f'(x) > 0smsmonoton fallend $f'(x) \leq 0$ streng monoton fallend f'(x) < 0 smf

Das Monotonieverhalten kann sich nur an den Extremstellen und an den Rändern des Definitionbereichs (Definitionslücken) ändern.

Monotonieverhalten an der Stelle x = -6 $m = f'(-6) = 1\frac{7}{8} > 0 \Rightarrow \text{sms}$ Monotonieverhalten an der Stelle x = -2 $f'(-2) = -1\frac{1}{8} < 0 \Rightarrow \text{smf}$

Extremwerte und das Monotonieverhalten

Extremwerte sind Hochpunkte (Maxima) bzw. Tiefpunkte (Minima) der Funktion. In den Extremwerten hat f(x) eine horizontale Tangente (HT).

• f'(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen $(x_0, x_1..)$.

In diesen Nullstellen $(x_0, x_1...)$ kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Zur Unterscheidung werden die Nullstellen in die Vorzeichentabelle eintragen. Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von f'(x) in die Tabelle eintragen. (Hinreichende Bedingung)

• Hochpunkt (HP)

Monotonoieverhalten ändert sich von streng monoton steigend (sms) nach streng monoton fallend (smf).

Vorzeichenwechsel (VZW) der 1. Ableitung f'(x) von Plus

nach M	inus.		
	x <	x_1	< x
f'(x)	+	0	-
Graph	sms	HP	smf

• Tiefpunkt (TP)

Monotonoieverhalten ändert sich von streng monoton fallend (smf) nach streng monoton steigend (sms).

Vorzeichenwechsel (VZW) der 1. Ableitung f'(x) von Minus

nach Plus.						
	x <	x_1	< x			
f'(x)	_	0	+			
Graph	smf	TP	sms			

• Terrassenpunkt (TEP)

Monotonoieverhalten ändert sich nicht. Kein Vorzeichenwechsel (VZW) der 1. Ableitung.

	x <	x_1	< x		x <	x_1	< x
f'(x)	+	0	+	f'(x)	_	0	_
Graph	sms	TEP	sms	Graph	smf	TEP	smf

Die Ränder des Definitionsbereichs (Definitionslücken) müssen in die Tabelle mit eingetragen werden.

 \bullet Funktion

$$f_1(x) = \frac{1}{32}x^3 - 1\frac{1}{2}x$$

•1. Ableitungen
$$f'(x) = \frac{3}{32}x^2 - 1\frac{1}{2} = \frac{3}{32}(x+4)(x-4)$$

$$f'(x) = \frac{3}{32}x^2 - 1\frac{1}{2} = 0$$

$$\begin{array}{l} \frac{3}{32}x^2 - 1\frac{1}{2} = 0 & / + 1\frac{1}{2} \\ \frac{3}{32}x^2 = 1\frac{1}{2} & / : \frac{3}{32} \\ x^2 = \frac{1\frac{1}{2}}{\frac{3}{32}} \end{array}$$

$$x = \pm \sqrt{16}$$

$$x_1 = 4$$
 $x_2 = -4$

• Vorzeichentabelle von f'(x)

	, , , , , , , , , , , , , , , , , , , ,					
		x <	-4	< x <	4	< x
$Graph \mid sms \mid HP \mid smf \mid TP \mid sms$	f'(x)	+	0	_	0	+
	Graph	sms	HP	smf	TP	sms

Hochpunkt:(-4/4)Tiefpunkt:(4/-4)

• Monotonieverhalten

$$x \in]-\infty; -4[\cup]4; \infty[f'(x) > 0 \text{ sms}$$

 $x \in]-4; 4[f'(x) < 0 \text{ smf}$

Funktion

$$f_2(x) = \frac{\frac{1}{2}x^3}{x-1} - 2$$

•1. Ableitungen

$$\begin{split} f'\left(x\right) &= \frac{\frac{1}{2}x^{2} \cdot (x-1) - \frac{1}{2}x^{3} \cdot 1}{\left(x-1\right)^{2}} \\ &= \frac{\left(\frac{1}{2}x^{3} - \frac{1}{2}x^{2}\right) - \frac{1}{2}x^{3}}{(x-1)^{2}} \\ &= \frac{x^{3} - \frac{1}{2}x^{2}}{(x-1)^{2}} \\ \text{Zähler} &= 0 \\ x^{2}\left(x-1\frac{1}{2}\right) &= 0 \Rightarrow x = 0 \quad \lor \quad x-1\frac{1}{2} = 0 \end{split}$$

$$x^{2}(x-1\frac{1}{2}) = 0 \Rightarrow x = 0 \quad \lor \quad x-1\frac{1}{2} = 0$$

$$x-1\frac{1}{2} = 0 \quad /+1\frac{1}{2}$$

$$x = 1\frac{1}{2}$$

 $x_0 = 0$; 2-fache Nullstelle

 $x_1 = 1\frac{1}{2}$; 1-fache Nullstelle

Nullstellen des Nenners aus f(x) übernehmen $x_3 = 1$

	x <	0	< x <	1	< x <	$1\frac{1}{2}$	< x
f'(x)	_	0	_		-	0	+
Graph	smf	TEP	smf		smf	HP	sms

 $TEP(0/0) TP(1\frac{1}{2}/1\frac{3}{8})$

ullet Monotonieverhalten $x \in]-\infty; 0[\cup]0; 1[\cup]1\frac{1}{2}; \infty[f'(x) < 0 \text{ smf}]$ $x \in]1\frac{1}{2}; \infty[f'(x) > 0 \text{ sms}]$

Analysis Differential rechnung

Extremwerte und die 2. Ableitung

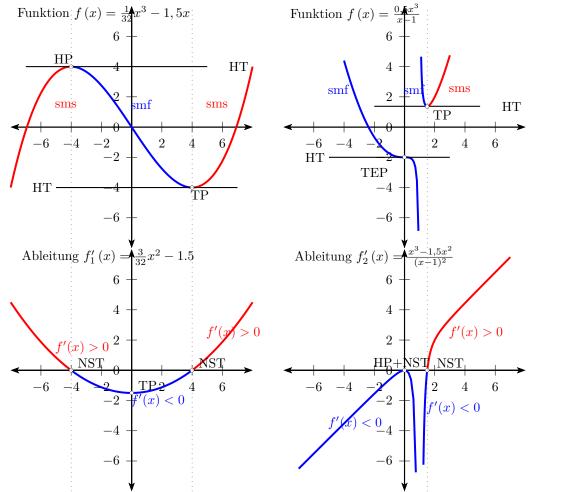
In den Extremwerten hat f(x) eine horizontale Tangente (HT).

• f'(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen $(x_0, x_1..)$.

In diesen Nullstellen $(x_0,x_1..)$ kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Einsetzen der Nullstellen x_0, x_1 .. in die 2. Ableitung (Hinreichende Bedingung).


- $f''(x_0) > 0(LK) \Rightarrow \text{Tiefpunkt (Minimum) bei } x_0$
- $f''(x_0) < 0(RK) \Rightarrow \text{Hochpunkt (Maximum) bei } x_0$
- $f''(x_0) = 0 \land f'''(x_0) \neq 0 \Rightarrow \text{Terrassenpunkt}$

•Funktion $f_1(x) = \frac{1}{32}x^3 - 1\frac{1}{2}x$ •1. Ableitungen $f'(x) = \frac{3}{32}x^2 - 1\frac{1}{2} = \frac{3}{32}(x+4)(x-4)$ •2. Ableitungen $f''(x) = \frac{3}{16}x$ • $f'(x) = \frac{3}{32}x^2 - 1\frac{1}{2} = 0$ $\frac{3}{32}x^2 - 1\frac{1}{2} = 0 \quad / + 1\frac{1}{2}$ $\frac{3}{32}x^2 = 1\frac{1}{2} \quad / : \frac{3}{32}$ $x^2 = \frac{1\frac{1}{2}}{\frac{3}{32}}$ $x = \pm\sqrt{16}$ $x_1 = 4 \quad x_2 = -4$ $f''(-4) = -\frac{3}{4} < 0 \Rightarrow \text{HP}(-4/4)$ $f''(4) = \frac{3}{4} > 0 \Rightarrow \text{TP}(4/-4)$

Interaktive Inhalte:

Kurvendiskussion

4.2.3 Graph der 1. Ableitung

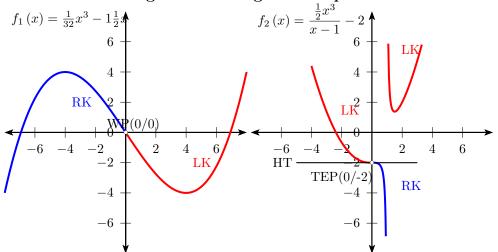
sms - streng monoton steigend; smf - streng monoton fallend; VZW - Vorzeichenwechsel; NST - Nullstelle; HP - Hochpunkt (Maximum); TP - Tiefpunkt (Minimum); HT - horizontale Tangente; TEP - Terrassenpunkt; VA - vertikale Asymptote; HA - horizontale Asymptote; LK - Linkskrümmung; RK - Rechtskrümmung; WP - Wendepunkt; PS - Punktsymmetrie zum Ursprung; AS - Achsensymmetrie

Analysis Differential rechnung

zur y-Achse

Funktion - 1. Ableitung f'(x)

Funktion $f(x)$	Ableitung $f'(x)$
Extremwert	NST f'(x) = 0
HT	NST f'(x) = 0
HP	NST und VZW von $+$ nach $-$
TP	NST und VZW von $-$ nach $+$
TEP	NST ohne VZW
WP	Extremwert
sms	f'(x) > 0 (positiv)
smf	f'(x) < 0 (negativ)
VA	$VA \lim_{x \to x_0} f'(x) = \pm \infty$
$_{ m HA}$	$\operatorname{HA} \lim_{x \to \pm \infty} f'(x) = 0$
PS	AS
AS	PS


$f_1(x) = \frac{1}{32}x^3 - 1,5x$	$f_1'(x) = \frac{3}{32}x^2 - 1.5$	
$f_1(x)$	$f_1'(x)$	
Extremwert: $x = -4$	NST x = -4	
HP:x = -4	VZW von + nach - x = -4	
WP: $x = 0$	Extremwert: $x = 0$	
sms: $x < -4$	f(x) > 0 x < -4	

Interaktive Inhalte:

Funktionsgraph

Wertetable

4.2.4 2. Ableitung - Krümmung - Wendepunkte

 $VZW - Vorzeichenwechsel; \ NST - Nullstelle \ ; \ HT - horizontale \ Tangente; \ TEP - Terrassenpunkt; \ VA - vertikale \ Asymptote; \ HA - horizontale \ Asymptote; \ LK - Linkskrümmung; \ RK - Rechtskrümmung; \ WP - Wendepunkt; \\$

Krümmung von $f(x_0)$ an der Stelle x_0

Rechtskrümmung RK f''(x) < 0Linkskrümmung LK f''(x) > 0

Das Krümmungsverhalten kann sich nur an den Nullstellen der 2. Ableitung und an den Rändern des Definitionbereichs (Definitionslücken) ändern.

Wendepunkte und das Krümmungsverhalten

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.

• f''(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 2. Ableitung bestimmen $(x_0, x_1...)$. Zur Unterscheidung zwischen Wendepunkt und Flachpunkt werden die Nullstellen in die Vorzeichentabelle eintragen (Hinreichende Bedingung). Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von f''(x) in die Tabelle eintragen.

• Wendepunkt (WP)

Das Krümmungsverhalten ändert sich von rechtsgekrümmt (RK) nach linksgekrümmt (LK) oder von linksgekrümmt nach rechtsgekrümmt.

Vorzeichenwechsel (VZW) der 2. Ableitung f''(x) von Plus

nach Minus oder von Minus nach Plus

	x <	x_1	< x		x <	x_1	< x
f''(x)	+	0	-	$f^{\prime\prime}(x)$	-	0	+
Graph	LK	WP	RK	Graph	RK	WP	LK

• Flachpunkt (FP)

Krümmungsverhalten ändert sich nicht

Kein Vorzeichenwechsel (VZW) der 2. Ableitung

	x <	x_1	< x			x <	x_1	< x
$f^{\prime\prime}(x)$	+	0	+	$f^{\prime\prime}(x)$	c)	_	0	_
Graph	LK	FP	LK	Grap	h	RK	FP	RK

Die Ränder des Definitionsbereichs (Definitionslücken) müssen in die Tabelle mit eingetragen werden.

Funktion

$$f_1(x) = \frac{1}{32}x^3 - 1\frac{1}{2}x$$

$$f'_1(x) = \frac{3}{32}x^2 - 1\frac{1}{2}$$

•2. Ableitungen

$$f_1''(x) = \frac{3}{16}x$$

WP(0/0)

$$x \in]0; \infty[$$
 $f''(x) > 0$ LK
 $x \in]-\infty; 0[$ $f''(x) < 0$ RK

Funktion

$$f_2(x) = \frac{\frac{1}{2}x^3}{x - 1}$$
$$f'_2(x) = \frac{\frac{x^3 - 1}{2}x}{(x - 1)^2}$$

•2. Ableitungen

•2. Ableitungen
$$f_2''(x) = \frac{(x^2 - 3x + 3)x}{(x - 1)^3} \quad \text{Zähler} = 0$$
$$x(x^2 - 3x + 3) = 0 \Rightarrow x = 0 \quad \forall \quad x^2 - 3x + 3 = 0$$
$$x^2 - 3x + 3 = 0$$
$$x_{1/2} = \frac{+3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$
$$x_{1/2} = \frac{+3 \pm \sqrt{-3}}{2 \cdot 1}$$

Diskriminante negativ keine Lösung

 $x_9 = 0$; 1-fache Nullstelle

Nullstelle des Nenners aus f(x) übernehmen

 $x_{10} = 1$; 1-fache Nullstelle

	x <	0	< x <	1	< x
f''(x)	+	0	-	0	+
Graph	RK	WP	LK		RK

WP(0/-2) kein WP x = 1

 $x \in]-\infty;0[\cup]1;\infty[f''(x)>0 \text{ LK}$ $x \in]0;1[f''(x) < 0 \text{ RK}$

Wendepunkte und die 3. Ableitung

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.

• f''(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 2. Ableitung bestimmen $(x_0, x_1..)$.

Einsetzen der Nullstellen x_0, x_1 ... in die 3. Ableitung (Hinreichende Bedingung)

• $f'''(x_0) \neq 0 \Rightarrow \text{Wendepunkt}$

ulletFunktion

$$f_1(x) = \frac{1}{32}x^3 - 1\frac{1}{2}x$$

•1. Ableitungen

$$f'(x) = \frac{3}{32}x^2 - 1\frac{1}{2} = \frac{3}{32}(x+4)(x-4)$$

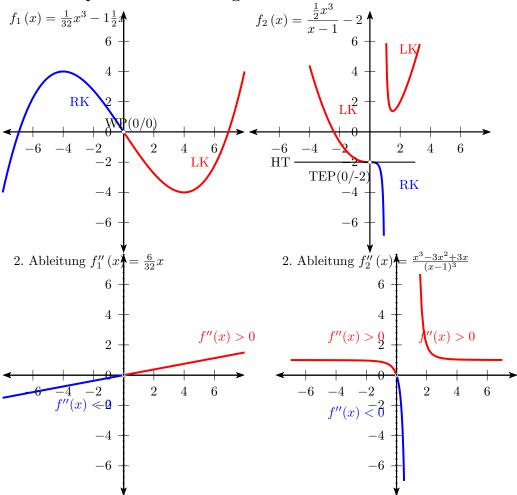
•2. Ableitungen

$$f''(x) = \frac{3}{16}x$$

•3. Ableitungen

$$f'''(x) = \frac{3}{16}$$
$$f''(x) = \frac{3}{16}x = 0$$

$$f'''(0) = \frac{3}{16} \neq 0 \Rightarrow$$


Wp(0/0)

Interaktive Inhalte:

Kurvendiskussion

Analysis Differential rechnung

4.2.5 Graph der 2. Ableitung

sms - streng monoton steigend; smf - streng monoton fallend; VZW - Vorzeichenwechsel; NST - Nullstelle; HP - Hochpunkt (Maximum); TP - Tiefpunkt (Minimum); HT - horizontale Tangente; TEP - Terrassenpunkt; VA - vertikale Asymptote; HA - horizontale Asymptote; LK - Linkskrümmung; RK - Rechtskrümmung; WP - Wendepunkt;

Funktion - 2. Ableitung f''(x)

Funktion $f(x)$	2. Ableitung $f''(x)$
WP	NST f''(x) = 0 mit VZW
LK	f''(x) > 0
RK	f''(x) < 0
TEP	NST mit VZW
VA	VA
HA	HA

Interaktive Inhalte:

Funktionsgraph

Wertetable

4.2.6 Ableitung der Grundfunktionen

${\bf Polynom funktion}$

$$f(x) = x^n \qquad f'(x) = nx^{n-1}$$

Die Ableitungen bildet man durch:

Exponent vorziehen und vom Exponenten 1 abziehen

$$f\left(x\right) = x \qquad f'\left(x\right) = 1$$

$$f(x) = ax^n \qquad f'(x) = nax^{n-1}$$

$$f(x) = ax$$
 $f'(x) = a$

Konstanter Faktor a bleibt erhalten

$$f\left(x\right) = a \qquad f'\left(x\right) = 0$$

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

Bei Summen wird jeder Summand einzeln abgeleitet

$$f_{1}(x) = x^{5} f'_{1}(x) = 5x^{5-1} = 5x^{4}$$

$$f_{2}(x) = 8x^{5} f'_{2}(x) = 8 \cdot 5x^{5-1} = 40x^{4}$$

$$f_{3}(x) = 2x f'_{3}(x) = 2$$

$$f_{4}(x) = 5 f'_{4}(x) = 0$$

$$f_{5}(x) = x^{5} + x^{4} + x + 3 f'_{5}(x) = 5x^{4} + 4x^{3} + 1$$

$$f''_{5}(x) = 20x^{3} + 12x^{2}$$

Exponentialfunktion Basis e

$$f(x) = e^{x} \qquad f'(x) = e^{x}$$

$$f(x) = ae^{x} \qquad f'(x) = ae^{x}$$

$$f(x) = ae^x + b \qquad f'(x) = ae^x$$

$$f(x) = 3e^x + 4$$
 $f'(x) = 3e^x$

Logarithmusfunktion Basis e

$$f(x) = \ln x$$
 $f'(x) = \frac{1}{x}$
 $f(x) = a \ln x$ $f'(x) = \frac{a}{x}$

$$f(x) = a \ln x + b$$
 $f'(x) = \frac{a}{x}$

$$f(x) = 4\ln x + 5 \qquad f'(x) = \frac{4}{x}$$

Exponentialfunktion allgemein

$$f(x) = a^x$$
 $f'(x) = a^x \ln a$

$$f(x) = 3^x$$
 $f'(x) = 3^x \ln 3$

Logarithmusfunktion allgemein

$$f(x) = \log_a x$$
 $f'(x) = \frac{1}{x \ln a}$

$$f(x) = \log_4 x$$
 $f'(x) = \frac{1}{x \ln 4}$

Trigonometrische Funktionen

$$f(x) = \sin x$$
 $f'(x) = \cos x$

$$f(x) = \cos x$$
 $f'(x) = -\sin x$

$$f(x) = \tan x$$
 $f'(x) = \frac{1}{\cos^2 x}$

$$f_2(x) = x^3 + 2 \cdot \sin x$$
 $f'_2(x) = 3 \cdot x^2 + 2 \cdot \cos x$

Interaktive Inhalte:

Ableitung

Analysis Differential rechnung

4.2.7 Ableitungsregeln

Ableiten von Summen und Differenzen

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

 $f_1(x) = x^5 + x^4 + x + 3$ $f'_1(x) = 5x^4 + 4x^3 + 1$ $f''_1(x) = 20x^3 + 12x^2$ $f_2(x) = x^3 + 2 \cdot \sin x$ $f'_2(x) = 3 \cdot x^2 + 2 \cdot \cos x$

Ableiten mit konstantem Faktor

$$(c \cdot f(x))' = c \cdot f'(x)$$

 $f_1(x) = 5e^x + 4 \ln x$ $f'_1(x) = 5e^x + 4 \frac{1}{x}$ $f_2(x) = 5 \cos x + 4 \sin x$ $f'_2(x) = -5 \sin x + 4 \cos x$

Kettenregel

 $(f(g(x)))' = f'(g(x)) \cdot g'(x)$

• äußere Funktion f() ableiten

• innere Funktion g(x) unabgeleitet abschreiben

 \bullet mit der Ableitung der inneren Funktion
g(x) multiplizieren (nachdifferenzieren)

 $\begin{array}{ll} f_1\left(x\right) = e^{2x} \\ \text{\"{a}u\"{B}ere Funktion: } e^{(..)} & \text{innnere Funktion: } 2x \\ f'_1\left(x\right) = e^{2x} \cdot 2 = 2e^{2x} \\ f_2\left(x\right) = 3\sin 5x \\ \text{\"{a}u\"{B}ere Funktion: } sin(..) & \text{innnere Funktion: } 5x \\ f'_2\left(x\right) = 3\cos 5x \cdot 5 = 15\cos 5x \\ f_3\left(x\right) = 5e^{3x^3} \\ \text{\"{a}u\^{B}ere Funktion: } e & \text{innnere Funktion: } 3x^3 \\ f'_3\left(x\right) = 5e^{3x^3} \cdot 9x^2 = 45x^2e^{3x^3} \\ f_4\left(x\right) = (x^3 - x)^7 \\ \text{\"{a}u\^{B}ere Funktion: } (...)^7 & \text{innnere Funktion: } x^3 - x \\ f'_4\left(x\right) = 7(x^3 - x)^6 \cdot (3x^2 - 1) = (21x^2 - 7)(x^3 - x)^6 \end{array}$

Produktregel

 $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

 \bullet 1. Faktor f(x) ableiten

• mal

• 2. Faktor g(x) unabgeleitet

• plus

• 1. Faktor f(x) unabgeleitet

• mal

• 2. Faktor g(x) abgeleitet

 $f_1(x) = x^2 e^x$ $f'_1(x) = 2x \cdot e^x + x^2 \cdot e^x$ $f'_1(x) = x e^x (2+x)$ $f_2(x) = (x^2 - 6 \cdot x + 2) \cdot e^x$ $f'_2(x) = (2 \cdot x - 6) \cdot e^x + (x^2 - 6 \cdot x + 2) \cdot e^x$ $f'_2(x) = e^x (2x - 6 + x^2 - 6x + 2)$ $f'_2(x) = e^x (x^2 - 4x - 4)$

Quotientenregel

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

- Zähler f(x) ableiten
- mal

Analysis

- Nenner g(x) unabgeleitet
- minus
- Zähler f(x) unabgeleitet
- mai
- Nenner g(x) abgeleitet
- durch
- Nenner g(x) im Quadrat

$$f(x) = \frac{3x - 1}{x^2} \qquad f'(x) = \frac{3 \cdot x^2 - (3x - 1) \cdot 2x}{(x^2)^2}$$

$$f'(x) = \frac{3x^2 - (6x^2 - 2x)}{x^4}$$

$$f'(x) = \frac{-3x^2 + 2x}{(x^4)}$$

$$f'(x) = \frac{-3x(x - \frac{2}{3})}{x^4}$$

$$f'(x) = \frac{-3(x - \frac{2}{3})}{x^3}$$

$$f'(x) = \frac{-3x + 2}{x^3}$$

4.2.8 Tangenten- und Normalengleichung

Tangentengleichung

Tangente an der Stelle
$$x_0$$
:
$$g(x) = f'(x_0)(x - x_0) + f(x_0)$$
oder
$$y_0 = f(x_0)$$

$$m_t = f'(x_0)$$
Geradengleichung:
$$y = m \cdot x + t$$

$$m_t, x_0, y_0$$
 einsetzen und nach tauflösen

$$t = y_0 - m_t \cdot x_0$$
$$m_t, t \text{ einsetzen}$$

$$y = m_t \cdot x + t$$

Funktion
$$f(x) = x^2$$

$$f'(x) = 2x$$
Tangente an der Stelle $x_0 = \frac{1}{2}$

$$f(\frac{1}{2}) = \frac{1}{4}$$

$$f'(\frac{1}{2}) = 1$$

$$g(x) = f'(x_0)(x - x_0) + f(x_0)$$

$$g(x) = f'(\frac{1}{2})(x - \frac{1}{2}) + f(\frac{1}{2})$$

$$g(x) = 1(x - \frac{1}{2}) + \frac{1}{4}$$

$$g(x) = x - \frac{1}{2} + \frac{1}{4}$$

$$g(x) = x - \frac{1}{4}$$

Normalengleichung

Normale an der Stelle
$$x_0$$
:
$$g(x) = \frac{-1}{f'(x_0)}(x - x_0) + f(x_0)$$
oder
$$y_0 = f(x_0)$$

$$m_t = f'(x_0)$$
Steigung der Normalen:
$$m_n = \frac{-1}{m_t}$$
Geradengleichung:
$$y = m \cdot x + t$$

$$m_n, x_0, y_0 \text{ einsetzen und nach t auflösen}$$

$$t = y_0 - m_n \cdot x_0$$

$$m_n, t \text{ einsetzen}$$

$$y = m_n \cdot x + t$$

Funktion
$$f(x) = x^2$$

$$f'(x) = 2x$$
Normale an der Stelle $x_0 = \frac{1}{2}$

$$f(\frac{1}{2}) = \frac{1}{4}$$

$$f'(\frac{1}{2}) = 1$$

$$g(x) = \frac{-1}{f'(x_0)}(x - x_0) + f(x_0)$$

$$g(x) = \frac{-1}{f'(\frac{1}{2})}(x - \frac{1}{2}) + f(\frac{1}{2})$$

$$g(x) = \frac{-1}{1}(x - \frac{1}{2}) + \frac{1}{4}$$

$$g(x) = -1x + \frac{1}{2} + \frac{1}{4}$$

$$g(x) = -1x + \frac{3}{4}$$

Analysis Differentialrechnung

Interaktive Inhalte:

Funktionsgraph Wertetable Tangentengleichung

4.2.9 Newtonsches Iterationsverfahren

Nullstelle einer Funktion mit dem Newtonsches Iterationsverfahren berechnen.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
Startwort x_n wählen

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Startwert
$$x_0$$
 wählen
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Startwert: $x_0 = 1,000$ f(1,000) = -3,000f'(1,000) = 2,000 $x_1 = 1,000 - \frac{f(1,000)}{f(1,000)}$

$$x_1 = 1,000 - \frac{f(1,000)}{f'(1,000)}$$
$$x_1 = 1,000 - \frac{-3,000}{2,000}$$

 $x_1 = 2,500$

Funktion

 $f(x) = x^2 - 4,000$

f'(x) = 2,000x

f(2,500) = 2,250

f'(2,500) = 5,000

$$x_2 = 2,500 - \frac{f(2,500)}{f'(2,500)}$$

2,250

 $x_2 = 2,500$

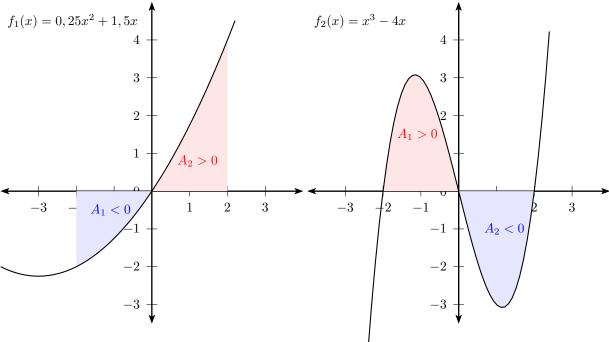
 $x_2 = 2,050$

f(2,050) = 0,203

f'(2,050) = 4,100

 $x_3 = 2,050 - \frac{f(2,050)}{f(2,050)}$ $\overline{f'(2,050)}$ 0, 203

 $x_3 = 2,001$


Interaktive Inhalte:

Newtonverfahren

Integralrechnung Analysis

Integralrechnung 4.3

4.3.1 Definition

Hauptsatz der Integralrechnung

$$F'(x) = f(x)$$

Die Ableitung von F(x) ist f(x)

F(x) ist Stammfunktion von f(x)

Die Menge aller Stammfunktionen erhält man durch das Addieren einer Konstanten c.

$$f(x) = ax^{n}$$
 $F(x) = \frac{1}{n+1}ax^{n+1} + c$

$$F_1(x) = x^2 + 2$$

$$F_1'(x) = 2x$$

 $F_1(x)$ ist Stammfunktion von f(x) = 2x

$$F_2(x) = x^2 + 3$$

$$F_2'(x) = 2x$$

 $F_2(x)$ ist Stammfunktion von f(x) = 2x

Die Menge aller Stammfunktionen von f(x) = 2x

$$F(x) = x^2 + c$$

Unbestimmtes Integral

$$F(x) = \int f(x) dx = F(x) + c$$

Die Stammfunktion zu einer Funktion f(x) ist das unbestimmte Integral.

$$f\left(x\right) = 6x^2$$

$$F(x) = \int 6x^2 dx = 6 \cdot \frac{1}{2}x^{2+1} + c$$

$$F(x) = 2x^3 + c$$

$$F(x) = \int 6x^2 dx = 6 \cdot \frac{1}{3}x^{2+1} + c$$

$$F(x) = \int 6x^2 dx = 6 \cdot \frac{1}{3}x^{2+1} + c$$

$$F(x) = 2x^3 + c$$

$$F(x) = \int (-\frac{1}{2}x^2 + 2x + 5) dx = -\frac{1}{6}x^3 + x^2 + 5x + c$$

Bestimmtes Integral

• Flächenbilanz

$$A = \int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

A ist der Flächeninhalt unter einer Kurve der Funktion f(x) im Integrationsbereich von a bis b.

Fläche oberhalb der x-Achse $\Rightarrow A > 0$

Fläche unterhalb der x-Achse $\Rightarrow A < 0$

Flächen unterhalb und oberhalb der x-Achse \Rightarrow Summe der Teilflächen

- Fläche zwischen dem Graphen und der x-Achse
- Nullstellen berechnen
- Flächen zwischen den Nullstellen berechnen
- Beträge der Flächen addieren

Funktion

$$f_1(x) = \frac{1}{4}x^2 + 1\frac{1}{2}x$$

Stammfunktion

$$F(x) = \frac{1}{12}x^3 + \frac{3}{4}x^2$$

Fläche unterhalb der x-Achse $\Rightarrow A_1 < 0$

$$A_{1} = \int_{-2}^{0} \left(\frac{1}{4}x^{2} + 1\frac{1}{2}x \right) dx = \left[\frac{1}{12}x^{3} + \frac{3}{4}x^{2} \right]_{-2}^{0}$$

$$= \left(\frac{1}{12} \cdot 0^{3} + \frac{3}{4} \cdot 0^{2} \right) - \left(\frac{1}{12} \cdot (-2)^{3} + \frac{3}{4} \cdot (-2)^{2} \right)$$

$$= (0) - \left(2\frac{1}{3} \right) = -2\frac{1}{3}$$

Fläche oberhalb der x-Achse $\Rightarrow A_2 > 0$

$$A_2 = \int_0^2 \left(\frac{1}{4}x^2 + 1\frac{1}{2}x\right) dx = \left[\frac{1}{12}x^3 + \frac{3}{4}x^2\right]_0^2$$

= $\left(\frac{1}{12} \cdot 2^3 + \frac{3}{4} \cdot 2^2\right) - \left(\frac{1}{12} \cdot 0^3 + \frac{3}{4} \cdot 0^2\right)$
= $\left(3\frac{2}{3}\right) - (0) = 3\frac{2}{3}$

Fläche unterhalb und oberhalb der x-Achse \Rightarrow Summe der Teilflächer

The differential band oberhals def X-richse
$$\rightarrow$$

$$A_3 = \int_{-2}^2 \left(\frac{1}{4}x^2 + 1\frac{1}{2}x\right) dx = \left[\frac{1}{12}x^3 + \frac{3}{4}x^2\right]^2$$

$$= \left(\frac{1}{12} \cdot 2^3 + \frac{3}{4} \cdot 2^2\right) - \left(\frac{1}{12} \cdot (-2)^3 + \frac{3}{4} \cdot (-2)^2\right)$$

$$= \left(3\frac{2}{3}\right) - \left(2\frac{1}{3}\right) = 1\frac{1}{3}$$

$$A_3 = A_1 + A_2 = \left(-2\frac{1}{3}\right) + 3\frac{2}{3} = 1\frac{1}{3}$$

$$f_2(x) = x^3 - 4x = x(x+2)(x-2)$$
• Nullstellen: $x_1 = -2$ $x_2 = 0$ $x_3 = 2$

•Nullstellen: $x_1 = -2$ $x_2 = 0$ $x_3 = 2$ $A_1 = \int_{-2}^{0} (x^3 - 4x) dx = \left[\frac{1}{4}x^4 - 2x^2\right]_{-2}^{0}$ $= \left(\frac{1}{4} \cdot 0^4 - 2 \cdot 0^2\right) - \left(\frac{1}{4} \cdot (-2)^4 - 2 \cdot (-2)^2\right)$ = (0) - (-4) = 4 $A_2 = \int_{-2}^{2} (x^3 - 4x) dx - \left[\frac{1}{2}x^4 - 2x^2\right]_{-2}^{2}$

 $A_2 = \int_0^2 (x^3 - 4x) \, dx = \left[\frac{1}{4} x^4 - 2x^2 \right]_0^2$ = $\left(\frac{1}{4} \cdot 2^4 - 2 \cdot 2^2 \right) - \left(\frac{1}{4} \cdot 0^4 - 2 \cdot 0^2 \right)$ = (-4) - (0) = -4

•Fläche zwischen dem Graphen und der x-Achse:

$$A = |A_1| + |A_2| = |4| + |-4| = 8$$

Integralfunktion

$$F(x) = \int_{k}^{x} f(t) dt = [F(t)]_{k}^{x} = F(x) - F(k)$$

Jede Integralfunktion hat mindestens eine Nullstelle.

$$F(k) = 0$$

$$\begin{split} F(x) &= \int_{-2}^{x} \left(2t^2 + 4t\right) dt = \left[\frac{2}{3}t^3 + 2t^2\right]_{-2}^{x} \\ &= \left(\frac{2}{3}x^3 + 2x^2\right) - \left(\frac{2}{3}\cdot(-2)^3 + 2\cdot(-2)^2\right) \\ &= \frac{2}{3}x^3 + 2x^2 - 2\frac{2}{3} \\ F(-2) &= 0 \end{split}$$

Interaktive Inhalte:

Stammfunktion

Integral

4.3.2 Integration der Grundfunktionen

Polynomfunktion

$$F(x) = \int x^n dx = \frac{1}{n+1} \cdot x^{n+1} + c$$

Zum Exponenten 1 addieren, durch den Exponenten dividieren.

$$F(x) = \int x \, \mathrm{dx} = \frac{1}{2}x^2 + c$$

$$F(x) = \int ax^n \, dx = a \frac{1}{n+1} \cdot x^{n+1} + c$$

Konstanter Faktor a bleibt erhalten.

$$F(x) = \int a \, dx = ax + c$$

$$\int f(x) + g(x) \, dx = \int f(x) \, dx + \int g(x) dx$$
Bei Summen wird jeder Summand einzeln integriert.

$$F(x) = \int 4 \, dx = 4x + c$$

$$F_2(x) = \int (-\frac{1}{2}x^2 + 2x + 5) \, dx =$$

$$F_2(x) = -\frac{1}{2} \cdot \frac{1}{3}x^{2+1} + 2 \cdot \frac{1}{2}x^{1+1} + 5x + c$$

$$F_2(x) = -\frac{1}{6}x^3 + x^2 + 5x + c$$

Exponentialfunktion Basis e

$$F(x) = \int e^x dx = e^x + c$$

$$F(x) = \int ae^x \, dx = ae^x + c$$

$$F(x) = \int ae^x + b \, dx = ae^x + bx + c$$

$$F(x) = \int -3e^x + 2 dx = -3e^x + 2x + c$$

Logarithmusfunktion Basis e

$$F(x) = \int \ln x \, dx = x \ln x - x + c$$

$$F(x) = \int a \ln x \, dx = a(x \ln x - x) + c$$

$$F(x) = \int a \ln x + b \, dx == a(x \ln x - x) + bx + c$$

$$F(x) = \int 7 \ln x + 2 dx = 7(x \ln x - x) + 2x + c$$

Rationale Funktion mit linearer Funktion im Nenner

$$F(x) = \int \frac{1}{x} dx = \ln|x| + c$$

$$F(x) = \int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + c$$

$$F(x) = \int \frac{1}{x+1} dx = \ln|x+1| + c$$

$$F(x) = \int \frac{1}{2x+3} dx = \frac{1}{2} \ln|2x+3| + c$$

Trigonometrische Funktionen

$$F(x) = \int \sin x \, dx = -\cos x + c$$

$$F(x) = \int \cos x \, dx = \sin x + c$$

Interaktive Inhalte:

Stammfunktion

4.3.3 Integrationsregeln

Integration von Summen und Differenzen

$$\int f(x)dx + \int g(x)dx = \int f(x) + g(x)dx$$

Integration mit konstantem Faktor

$$\int c \cdot f(x) dx = c \int f(x) dx$$

Integration mit vertauschten Grenzen

$$\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx$$

Integrationsgrenzen zusammenfassen

$$\int_a^b f(x) dx + \int_b^c f(x)dx = \int_a^c f(x) dx$$

Ableitung des Nenners im Zähler

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

$$\int \frac{2x}{x^2} dx = \ln|x^2| + c$$

$$\int \frac{-12x^2 + 5}{-4x^3 + 5x - 2} dx = \ln|-4x^3 + 5x - 2| + c$$

Innere Funktion ist der abgeleitete Faktor

$$\int g'(x)f(g(x)) \, dx = F(x) + c$$

$$\int 2x(x^2 - 3)^4 dx = \frac{1}{5}(x^2 - 3)^5 + c$$

$$\int 2xe^{x^2 - 3} dx = e^{x^2 - 3} + c$$

$$\int 2x\sin(x^2 - 3) dx = -\cos(x^2 - 3) + c$$

$$\int (3x^2 - 6x)e^{x^3 - 3x^2} dx = e^{x^3 - 3x^2} + c$$

Innere Funktion ist eine lineare Funktion

$$\int f(ax+b) \, dx = \frac{1}{a}F(x) + c$$

$$\int (2x-6)^4 dx = \frac{1}{5} \cdot \frac{1}{2} (2x-3)^5 + c = \frac{1}{10} (2x-3)^5 + c$$

$$\int e^{2x-6} dx = \frac{1}{2} e^{2x-6} + c$$

$$\int \cos(-2x-6) dx = -\frac{1}{2} \sin(-2x-3) + c$$

$$\int \frac{1}{5x+3} dx = \frac{1}{5} \ln|5x+3| + c$$

Analysis Integralrechnung

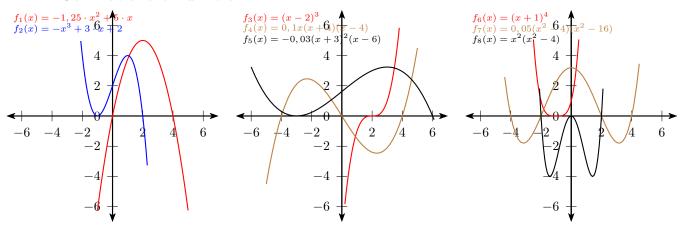
4.3.4 Graph der Stammfunktion

sms - streng monoton steigend; smf - streng monoton fallend; VZW - Vorzeichenwechsel; NST - Nullstelle; HP - Hochpunkt (Maximum); TP - Tiefpunkt (Minimum); HT - horizontale Tangente; TEP - Terrassenpunkt; VA - vertikale Asymptote; HA - horizontale Asymptote; LK - Linkskrümmung; RK - Rechtskrümmung; WP - Wendepunkt; PS - Punktsymmetrie zum Ursprung; AS - Achsensymmetrie zur y-Achse

Zu jeder Funktion f(x) gibt es eine Menge von Stammfunktionen F(x), die um c in y-Richtung verschoben sind.

cronon i (n), are am e m j	renomental versemosem sima.
Funktion $f(x)$	Stammfunktion $F(x)$
$\overline{\text{NST } f(x) = 0}$	Extremwert (HT)
VZW von + nach -	HP
VZW von - nach +	TP
NST ohne VZW	TEP
Extremwert	WP
f(x) > 0 (positiv)	sms
f(x) < 0 (negativ)	smf
PS	AS
AS	PS

$f_1(x) = \frac{3}{32}x^2 - 1.5$	
$F_1(x) = \int_{-32}^{3} \frac{3}{32}x^2 - 1.5 dx = \frac{1}{32}x$	$a^3 - 1.5x + c$
$F_{12}(x) = \frac{1}{32}x^3 - 1,5x + 2$ F_{1-}	
$F_{1-3}(x) = \frac{1}{32}x^3 - 1,5x - 3$ F	$f_{10}(x) = \frac{1}{32}x^3 - 1,5x$
$f_1(x)$	$F_1(x)$
NST x = -4	Extremwert: $x = -4$
VZW von + nach - x = -4	HP:x = -4
Extremwert: $x = 0$	WP: $x = 0$
f(x) > 0 x < -4	sms: $x < -4$


Interaktive Inhalte:

Funktionsgraph V

Wertetable

Kurvendiskussion

Ganzrationale Funktion 4.4.1

Formen der Polynomfunktion - ganzrationale Funktion

• Summendarstellung der Polynomfunktion

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} \dots + a_1 x^1 + a_0$$
 oder

$$f(x) = ax^n + bx^{n-1} + cx^{n-2}...$$

Die höchste Potenz (n) gibt den Grad der Polynomfunktion an.

• Produktdarstellung (faktorisierte Form) der Polynom-

Ist der Grad des Polynoms gleich der Anzahl der (reellen)Nullstellen, kann man die Funktion in faktorisierter Form schreiben.

$$f(x) = a(x - x_1)(x - x_2)(x - x_3)...$$

Nullstellen: $x_1, x_2, x_3...$

Linearfaktoren: $(x-x_1), (x-x_2)...$

a=Koeffizient der höchsten Potenz

Grad 1: Lineare Funktion

$$f(x) = ax + b$$

Grad 2: Quadratische Funktion

$$f(x) = ax^2 + bx + c$$
 $f(x) = a(x - x_1)(x - x_2)$

Grad 3: Kubische Funktion

$$f(x) = ax^3 + bx^2 + cx + d$$

$$f(x) = a(x - x_1)(x - x_2)(x - x_3)$$

Grad 4: Biquadratische Funktionen

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

$$f(x) = a(x - x_1)(x - x_2)(x - x_3)(x - x_4)$$

Grad 5:

$$f(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f$$

$$f(x) = a(x - x_1)(x - x_2)(x - x_3)(x - x_4)(x - x_5)$$

Summen- in Produktdarstellung:

$$f_1(x) = -1\frac{1}{4}x^2 + 5x = -1\frac{1}{4}x(x-4)$$

$$f_2(x) = -x^3 + 3 \cdot x + 2 = -(x+1)^2(x-2)$$

$$f_2(x) = -x^3 + 3 \cdot x + 2 = -(x+1)^2(x-2)$$

 $f_4(x) = \frac{1}{10}x^3 - 1\frac{3}{5}x = 0$

$$x(\frac{1}{10}x^2 - 1\frac{3}{5}) = 0 \Rightarrow x_1 = 0 \quad \lor \quad \frac{1}{10}x^2 - 1\frac{3}{5} = 0$$

$$x_2 = 4 \qquad x_3 = -4$$

 Grad der Funktion = Anzahl der Nullstellen = 3

Faktorisierte Form: $f_4(x) = 0, 1x(x+4)(x-4)$

$$f_7(x) = \frac{1}{20}x^4 - x^2 + 3\frac{1}{5} = 0$$

$$u = x^2 \qquad u^2 = x^4$$

$$\frac{1}{20}u^2 - 1u + 3\frac{1}{5} = 0$$

$$u_{1/2} = \frac{+1 \pm \sqrt{(-1)^2 - 4 \cdot \frac{1}{20} \cdot 3\frac{1}{5}}}{2 \cdot \frac{1}{20}}$$

$$\frac{1}{2} = \frac{\cdot}{2 \cdot \frac{1}{20}}$$

$$u_1 = 16$$
 $u_2 = 4$

$$x^2 = 16$$

$$x = \pm \sqrt{16}$$

$$x_1 = 4 \qquad x_2 = -4$$

$$x^2 = 4$$

$$x = \pm \sqrt{4}$$

$$x_3 = 2 \qquad x_4 = -2$$

Faktorisierte Form:

$$f_7(x) = \frac{1}{20}(x+4)(x-4)(x+2)(x-2)$$

Produkt- in Summendarstellung:

$$f_3(x) = (x-2)(x-2)(x-2) = (x-2)^3$$

 $f_3(x) = x^3 - 6x^2 - 12x - 8$

$$f_3(x) = x^3 - 6x^2 - 12x - 8$$

$$f_5(x) = 0, 1x(x+4)(x-4) = 0, 1x^3 - 1\frac{3}{5}x$$

$$f_6(x) = (x+1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1$$

$$f_7(x) = 0.05(x^2 - 4)(x^2 - 16) = 0.05x^4 - x^2 + \frac{16}{5}$$

$$f_8(x) = x^2(x^2 - 4) = x^4 - 4x^2$$

Definitions- und Wertebereich

• Definitionsbereich $\mathbb{D} = \mathbb{R}$

• Wertebereich

- höchster Exponent ungerade:

 $\mathbb{W} = \mathbb{R}$

- höchster Exponent gerade:

 $\mathbb{W} = [absoluter\ Tiefpunkt;\infty[$

 $\mathbb{W} =]-\infty$; absoluter Hochpunkt]

 $\begin{array}{l} f_1\left(x\right) = -1\frac{1}{4}x^2 + 5x \\ \text{absoluter Hochpunkt: } (2/5) \quad \text{h\"ochster Exponent: 2 (gerade Zahl)} \\ \mathbb{D} = \mathbb{R} \qquad \mathbb{W} =] - \infty, 5[\\ f_2\left(x\right) = -x^3 + 3 \cdot x + 2 \\ \text{h\"ochster Exponent: 3 (ungerade Zahl)} \\ \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = \mathbb{R} \\ f_5\left(x\right) = 0, 1x^3 - 1\frac{3}{5}x \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = \mathbb{R} \\ f_7(x) = 0, 05x^4 - x^2 + \frac{16}{5} \\ \text{absoluter Tiefpunkt aus der Kurvendiskussion:} \\ \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = [-1\frac{4}{5}, \infty[\end{array}$

${\bf Symmetrie}$

Punktsymmetrie zum Ursprung:

$$f\left(-x\right) = -f\left(x\right)$$

f(x) hat <u>nur</u> ungerade Exponenten

Achsensymmetrie zur y-Achse:

$$f\left(-x\right) = f\left(x\right)$$

f(x) hat <u>nur</u> gerade Exponenten

$$f_1\left(-x\right) = -1\frac{1}{4}\cdot(-x)^2 + 5\cdot(-x)$$
 keine Symmetrie zur y-Achse und zum Ursprung
$$f_2\left(-x\right) = -1\cdot 1(-x)^3 + 3\cdot(-x) + 2$$
 keine Symmetrie zur y-Achse und zum Ursprung
$$f_4\left(x\right) = 0, 1x^3 - 1\frac{3}{5}x$$

$$f_4\left(-x\right) = 0, 1(-x)^3 - 1\frac{3}{5}\cdot(-x)$$

$$f_4\left(-x\right) = -\left(0, 1\cdot x^3 - 1\frac{3}{5}\cdot x\right)$$

$$f_4\left(-x\right) = -f\left(x\right) \Rightarrow \text{Symmetrie zum Ursprung}$$

$$f_7(x) = 0, 05x^4 - x^2 + \frac{16}{5}$$

$$f_7\left(-x\right) = \frac{1}{20}\cdot(-x)^4 - 1\cdot(-x)^2 + 3\frac{1}{5}$$

$$f_7\left(-x\right) = \frac{1}{20}\cdot x^4 - 1\cdot x^2 + 3\frac{1}{5}$$

$$f_7\left(-x\right) = f\left(x\right) \Rightarrow \text{Symmetrie zur y-Achse}$$

Schnittpunkte mit der x-Achse - Nullstellen

• Funktionsterm gleich Null setzen und die Gleichung lösen. (siehe Algebra-Gleichungen)

$$f(x) = 0$$
 $ax^{n} + bx^{n-1} + cx^{n-2}... = 0$

- höchster Exponent ungerade
- $1 \leq$ Anzahl der Nullstellen \leq Grad des Polynoms
- höchster Exponent gerade
- $0 \le$ Anzahl der Nullstellen \le Grad des Polynoms Faktorisierte Polynomfunktion
- \bullet Nullstellen aus faktorisierten Polynom ablesen.

$$a(x-x_1)(x-x_2)(x-x_3)...=0$$

Nullstellen: $x_1, x_2, x_3...$

Nullstellen aus faktorisierten Polynom ablesen.
$$f_3(x) = (x-2)^3$$
 $x_{123} = 2$ 3-fache Nullstelle $f_5(x) = -0.03(x+3)^2(x-6)$ $x_1 = -3$ 2-fache Nullstelle $x_{23} = 6$ 1-fache Nullstelle

Funktionsterm gleich Null setzen.

$$f_1(x) = -1\frac{1}{4}x^2 + 5x = 0$$

 $x(-1\frac{1}{4}x + 5) = 0 \Rightarrow x = 0 \quad \lor \quad -1\frac{1}{4}x + 5 = 0$
 $-1\frac{1}{4}x + 5 = 0 \quad \lor \quad x = 4$
 $x_1 = 0 \quad x_2 = 4$
Faktorisierte Form: $f_1(x) = -1\frac{1}{4}x(x - 4)$

$$f_2(x) = -x^3 + 3x + 2 = 0$$
Nullstelle für Polynmomdivision erraten: $x_1 = -1$

$$(-x^3 + 3x + 2) : (x+1) = -x^2 + x + 2$$

$$-(-x^3 - x^2)$$

$$\begin{array}{lll} -x^2 + x + 2 = 0 \\ x_{1/2} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot (-1) \cdot 2}}{2 \cdot (-1)} & \vee & x_2 = -1 & x_3 = 2 \\ \text{Faktorisierte Form:} & f_2 \left(x \right) = -(x+1)^2 (x-2) \end{array}$$

Faktorisierte Form:
$$f_2(x) = -(x+1)^2(x-2)$$

 $f_4(x) = \frac{1}{10}x^3 - 1\frac{3}{5}x = 0$
 $x(\frac{1}{10}x^2 - 1\frac{3}{5}) = 0 \Rightarrow x_1 = 0 \lor \frac{1}{10}x^2 - 1\frac{3}{5} = 0$

Grad der Funktion = Anzahl der Nullstellen = 3
Faktorisierte Form:
$$f_5(x) = 0, 1x(x+4)(x-4)$$

 $f_7(x) = \frac{1}{2}x^4 - x^2 + 3\frac{1}{2} = 0$

$$f_7(x) = \frac{1}{20}x^4 - x^2 + 3\frac{1}{5} = 0$$

$$u = x^2 \qquad u^2 = x^4$$

$$\frac{1}{20}u^2 - 1u + 3\frac{1}{5} = 0$$

$$u_{1/2} = \frac{+1 \pm \sqrt{(-1)^2 - 4 \cdot \frac{1}{20} \cdot 3\frac{1}{5}}}{2 \cdot \frac{1}{20}}$$

$$u_1 = 16 \qquad u_2 = 4 \qquad \vee$$

$$x^2 = 16 \quad x = \pm \sqrt{16} \quad x_1 = 4 \qquad x_2 = -4$$

$$x^2 = 4 \quad x = \pm \sqrt{4} \quad x_3 = 2 \qquad x_4 = -2$$
Faktorisierte Form:
$$f_7(x) = \frac{1}{20}(x+4)(x-4)(x+2)(x-2)$$

Graph oberhalb/unterhalb der x-Achse

Bei ganzrationalen Funktionen kann sich das Vorzeichen nur an den Nullstellen ändern. Einen beliebigen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen des Funktionswerts in die Tabelle eintragen.

Vorzeichentabelle mit f(x)

	x <	x_1	< x
f(x)	+	0	_
Graph	oberhalb	0	unterhalb

+ f(x) > 0 Graph oberhalb der x-Achse

- f(x) < 0 Graph unterhalb der x-Achse

$f_1(x) =$	$=-1\frac{1}{4}$	$x^2 +$	- 5 <i>x</i>			
	x <	0	< x <	4	< x	
f(x)	_	0	+	0	_	
$x \in]0;4$	I[f(x)]	$\overline{(r)} >$	0 ober	halb	der x	-Achse
				f(x)) < 0	unterhalb der x-Achse
$f_2(x) =$	$=-x^3$	+3	$\cdot x + 2$			
	x <	-1	1 < x <	(2	$2 \mid < a$	\overline{c}

 $x \in]-\infty;-1[\ \cup\]-1;2[\ f(x)>0$ oberhalb der x-Achse

 $x\in]2;\infty [\quad f(x)<0\quad \text{unterhalb der x-Achse}$ Faktorisierte Form:

 $f_5(x) = 0, 1x(x+4)(x-4)$ Nullstellen: $x_1 = 0$ $x_2 = 4$ $x_3 = -4$ -5 < -4 $x_3 = -4$

 $x\in]-4;0[~\cup~]4;\infty[~f(x)>0~$ oberhalb der x-Achse $x\in]-\infty;-4[~\cup~]0;4[~f(x)<0~$ unterhalb der x-Achse

Grenzwert - Verhalten im Unendlichen

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} \dots + a_1 x^1 + a_0$ $\lim_{x \to \infty} f(x) = \pm \infty \qquad \lim_{x \to \infty} f(x) = \pm \infty$

 $x \to \infty$ Vorzeichen des Glieds mit der höchsten Potenz und der Grad des Polynoms bestimmen das Vorzeichen des Grenzwerts.

Grenzwert gegen plus Unendlich

a_n	Grad	Grenzwert
+	gerade	$\lim_{x \to \infty} a_n \cdot \infty^n = \infty$
+	ungerade	$\lim_{x \to \infty} a_n \cdot \infty^n = \infty$
-	gerade	$\lim_{x \to \infty} a_n \cdot \infty^n = -\infty$
-	ungerade	$\lim_{x \to \infty} a_n \cdot \infty^n = -\infty$

Grenzwert gegen minus Unendlich

	G 1	α .
a_n	Grad	Grenzwert
+	gerade	$\lim_{x \to -\infty} a_n \cdot (-\infty)^n = \infty$
+	ungerade	$\lim_{x \to -\infty} a_n \cdot (-\infty)^n = -\infty$
-	gerade	$\lim_{x \to -\infty} a_n \cdot (-\infty)^n = -\infty$
-	ungerade	$\lim_{x \to -\infty} a_n \cdot (-\infty)^n = \infty$

 $\begin{array}{l} f_1\left(x\right) = -1\frac{1}{4}x^2 + 5x \\ \text{Glied mit der höchsten Potenz:} - 1\frac{1}{4}x^2 \\ \lim_{x \to \infty} f_1\left(x\right) = \left[-1\frac{1}{4} \cdot \infty^2\right] = -\infty \\ \lim_{x \to -\infty} f_1\left(x\right) = \left[-1\frac{1}{4} \cdot (-\infty)^2\right] = -\infty \end{array}$

 $f_2(x) = -x^3 + 3 \cdot x + 2$ Glied mit der höchsten Potenz: $-x^3$ $\lim_{x \to \infty} f_2(x) = [-1 \cdot \infty^3] = -\infty$ $\lim_{x \to \infty} f_2(x) = [-1 \cdot (-\infty)^3] = \infty$

Ableitung

$$f(x) = a_n x^n + a_{n-1} x^{n-1} \dots + a_2 x^2 + a_1 x^1 + a_0$$

Die Ableitungen bildet man durch: Exponent vorziehen und vom Exponenten 1 abziehen.

Die erste Ableitung f'(x) gibt die Steigung der Funktion an der Stelle x an.

Die zweite Ableitung f''(x) gibt die Krümmung der Funktion an der Stelle x an.

$$f'(x) = a_n \cdot n \cdot x^{n-1} + a_{n-1} \cdot (n-1) \cdot x^{n-2} \dots + a_2 \cdot 2 \cdot x^{2-1} + a_1$$

$$f(x) = ax^n \qquad f'(x) = nax^{n-1}$$

Grad 1: Lineare Funktion

$$f(x) = ax + b f'(x) = a$$

Grad 2: Quadratische Funktion

$$f(x) = ax^2 + bx + c \quad f'(x) = 2ax + b$$

Grad 3: Kubische Funktion

$$f(x) = ax^3 + bx^2 + cx + d$$
 $f'(x) = 3ax^2 + 2bx + c$

Grad 4: Biquadratische Funktionen

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

$$f'(x) = 4ax^3 + 3bx^2 + 2cx + d$$

$$f_1(x) = -1\frac{1}{4}x^2 + 5x = -1\frac{1}{4}x(x-4)$$

$$f'_1(x) = -2\frac{1}{2}x + 5$$

$$f''_1(x) = -2\frac{1}{2}$$

$$f'''_1(x) = 0$$

$$f_2(x) = -x^3 + 3x + 2 = -(x+1)^2(x-2)$$

$$f'_2(x) = -3x^2 + 3 = -3(x+1)(x-1)$$

$$f''_2(x) = -6x = -6x$$

$$f'''_2(x) = -6$$

Extremwerte und die 2. Ableitung

In den Extremwerten hat f(x) eine horizontale Tangente (HT).

• f'(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen $(x_0, x_1...)$.

In diesen Nullstellen $(x_0, x_1...)$ kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Einsetzen der Nullstellen $x_0, x_1...$ in die 2. Ableitung (Hinreichende Bedingung)

- $f''(x_0) > 0(LK) \Rightarrow \text{Tiefpunkt (Minimum) bei } x_0$
- $f''(x_0) < 0(RK) \Rightarrow \text{Hochpunkt (Maximum) bei } x_0$
- $f''(x_0) = 0 \land f'''(x_0) \neq 0 \Rightarrow \text{Terrassenpunkt}$

$$f'_{1}(x) = -2\frac{1}{2}x + 5 = 0$$

$$-2\frac{1}{2}x + 5 = 0 / -5$$

$$-2\frac{1}{2}x = -5 / : (-2\frac{1}{2})$$

$$x = \frac{-5}{-2\frac{1}{2}}$$

$$x = 2$$

$$f''_{1}(2) < 0 \Rightarrow \underline{\text{Hochpunkt: } (2/5)}$$

$$f'_{2}(x) = -3x^{2} + 3 = 0$$

$$-3x^{2} + 3 = 0 / -3$$

$$-3x^{2} = -3 / : (-3)$$

$$x^{2} = \frac{-3}{-3}$$

$$x = \pm\sqrt{1}$$

$$x_{1} = 1 x_{2} = -1$$

$$f''_{2}(-1) = 6 > 0 \Rightarrow \underline{\text{Tiefpunkt: } (-1/0)}$$

$$f''_{2}(1) = -6$$

$$f''_{2}(1) < 0 \Rightarrow \underline{\text{Hochpunkt: } (1/4)}$$

Extremwerte und das Monotonieverhalten

Extremwerte sind Hochpunkte (Maxima) bzw. Tiefpunkte (Minima) der Funktion. In den Extremwerten hat f(x) eine horizontale Tangente (HT).

• f'(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen $(x_0, x_1..)$.

In diesen Nullstellen $(x_0, x_1...)$ kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Zur Unterscheidung werden die Nullstellen in die Vorzeichentabelle eintragen. Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von f'(x) in die Tabelle eintragen. (Hinreichende Bedingung)

• Hochpunkt (HP)

Monotonoieverhalten ändert sich von streng monoton steigend (sms) nach streng monoton fallend (smf).

Vorzeichenwechsel (VZW) der 1. Ableitung f'(x) von Plus nach Minus

mach M	nach minus.								
	x <	x_1	< x						
f'(x)	+	0	_						
Graph	sms	HP	smf						

• Tiefpunkt (TP)

Monotonoieverhalten ändert sich von streng monoton fallend (smf) nach streng monoton steigend (sms).

Vorzeichenwechsel (VZW) der 1. Ableitung f'(x) von Minus nach Plus.

	x <	x_1	< x
f'(x)	_	0	+
Graph	smf	TP	sms

• Terrassenpunkt (TEP)

Monotonoieverhalten ändert sich nicht. Kein Vorzeichenwechsel (VZW) der 1. Ableitung.

	x <	x_1	< x		x <	x_1	< x
f'(x)	+	0	+	f'(x)	_	0	_
Graph	sms	TEP	sms	Graph	smf	TEP	smf

Die Ränder des Definitionsbereichs (Definitionslücken) müssen in die Tabelle mit eingetragen werden.

Wendepunkte und 3. Ableitung

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.

• f''(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 2. Ableitung bestimmen $(x_0, x_1..)$.

Einsetzen der Nullstellen x_0, x_1 .. in die 3. Ableitung (Hinreichende Bedingung)

• $f'''(x_0) \neq 0 \Rightarrow \text{Wendepunkt}$

 $f_1'''(x) = 0$ kein Wendepunkt

$$f_2''(x) = -6x = 0 \Rightarrow x = 0$$

$$f'''(0) = 2$$

$$f'''(0) \neq 0 \Rightarrow$$
Wendepunkt: (0/2)

Wendepunkte und das Krümmungsverhalten

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.

• f''(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 2. Ableitung bestimmen $(x_0, x_1...)$. Zur Unterscheidung zwischen Wendepunkt und Flachpunkt werden die Nullstellen in die Vorzeichentabelle eintragen. (Hinreichende Bedingung)

Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von f''(x) in die Tabelle eintragen.

• Wendepunkt (WP)

Das Krümmungsverhalten ändert sich von rechtsgekrümmt (RK) nach linksgekrümmt (LK) oder von linksgekrümmt nach rechtsgekrümmt.

Vorzeichenwechsel (VZW) der 2. Ableitung f''(x) von Plus nach Minus oder von Minus nach Plus.

	TOTAL TIT	11100	J C4 C 2 1	011 111	1100			
l		x <	x_1	< x		x <	x_1	< x
ſ	f''(x)	+	0	_	$f^{\prime\prime}(x)$	_	0	+
	Graph	LK	WP	RK	Graph	RK	WP	LK

• Flachpunkt (FP)

Krümmungsverhalten ändert sich nicht

Kein Vorzeichenwechsel (VZW) der 2. Ableitung

	x <	x_1	< x		x <	x_1	< x
f''(x)	+	0	+	$f^{\prime\prime}(x)$	_	0	_
Graph	LK	FP	LK	Graph	RK	FP	RK

Die Ränder des Definitionsbereichs (Definitionslücken) müssen in die Tabelle mit eingetragen werden.

Stammfunktion von f(x)

Stammfunktionen bildet man durch: zum Exponent 1 addieren, durch den Exponenten dividieren.

$$\begin{split} f\left(x\right) &= ax^n \qquad F\left(x\right) = \frac{1}{n+1}ax^{n+1} + c \\ \text{Unbestimmtes Integral: } F(x) &= \int f\left(x\right)dx = F(x) + c \end{split}$$

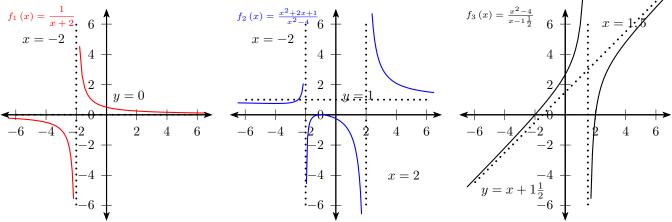
$$F_1(x) = \int (-1\frac{1}{4}x^2 + 5x)dx = -\frac{5}{12}x^3 + 2\frac{1}{2}x^2 + c$$

$$F_2(x) = \int (-x^3 + 3x + 2) dx = -\frac{1}{4}x^4 + 1\frac{1}{2}x^2 + 2x + c$$

Bestimmtes Integral

$$A = \int_{x_1}^{x_2} f(x) dx = [F(x)]_{x_1}^{x_2} = F(x_2) - F(x_1)$$

$$\begin{split} A_1 &= \int_0^4 \left(-1\frac{1}{4}x^2 + 5x \right) dx = \left[-\frac{5}{12}x^3 + 2\frac{1}{2}x^2 \right]_0^4 \\ &= \left(-\frac{5}{12} \cdot 4^3 + 2\frac{1}{2} \cdot 4^2 \right) - \left(-\frac{5}{12} \cdot 0^3 + 2\frac{1}{2} \cdot 0^2 \right) \\ &= \left(13\frac{1}{3} \right) - (0) = 13\frac{1}{3} \\ A_2 &= \int_{-1}^2 \left(-x^3 + 3x + 2 \right) dx = \left[-\frac{1}{4}x^4 + 1\frac{1}{2}x^2 + 2x \right]_{-1}^2 \\ &= \left(-\frac{1}{4} \cdot 2^4 + 1\frac{1}{2} \cdot 2^2 + 2 \cdot 2 \right) - \left(-\frac{1}{4} \cdot (-1)^4 + 1\frac{1}{2} \cdot (-1)^2 + 2 \cdot (-1) \right) \\ &= (6) - \left(-\frac{3}{4} \right) = 6\frac{3}{4} \end{split}$$


Interaktive Inhalte:

Funktionsgraph

Wertetable

hier klicken

4.4.2 Gebrochenrationale Funktion

Formen der gebrochenrationalen Funktion

Summendarstellung der gebrochenrationale Funktion:

$$f(x) = \frac{Z(x)}{N(x)}$$

$$= \frac{a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} \dots + a_2 x^2 + a_1 x^1 + a_0}{b_m x^m + b_{m-1} x^{m-1} + b_{m-2} x^{m-2} \dots + b_2 x^2 + b_1 x^1 + b_0}$$
Zählerpolynom vom Grad n:

$$Z(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} \dots + a_2 x^2 + a_1 x^1 + a_0$$

Nennerpolynom vom Grad m:

$$N(x) = b_m x^m + b_{m-1} x^{m-1} + b_{m-2} x^{m-2} \ldots + b_2 x^2 + b_1 x^1 + b_0$$

Produktdarstellung (faktorisierte Form) der gebrochenra-

tionale Funktion:

$$f(x) = a \frac{(x-z_1)(x-z_2)(x-z_3)...}{(x-n_1)(x-n_2)(x-n_3)...}$$

 $z_1, z_2, z_3...$ Nullstellen des Zählers

 n_1, n_2, n_3 ... Nullstellen des Nenners

$$f_2(x) = \frac{x^2 + 2x + 1}{x^2 + 4}$$

 $f_{2}\left(x\right)=\frac{x^{2}+2x+1}{x^{2}-4}$ Zählerpolynom: $Z(x)=x^{2}+2x+1$ Zählergrad:2 Nennergrad:2

Nennerpolynom: $N(x) = x^2 - 4$ Faktorisierte Form:

$$f_2(x) = \frac{(x+1)^2}{(x+2)(x-2)}$$
$$f_3(x) = \frac{x^2 - 4}{x - 1\frac{1}{x}}$$

Funktion nach der Polynomdivision:

$$f_3(x) = x + 1\frac{1}{2} + \frac{-1\frac{3}{4}}{x - 1\frac{1}{2}}$$

Definitions- und Wertebereich

Definitionsbereich:

Nullstellen des Nennerpolynoms ausschließen.

Nennerpolynom: N(x) = 0

 n_1, n_2, n_3 ... Nullstellen des Nenners (Definitionslücken)

 $\mathbb{D} = \mathbb{R} \setminus \{n_0, n_1, n_2..\}$

(siehe Algebra - Gleichungen)

Wertebereich:

Bestimmung nur nach Kurvendiskussion möglich.

$$f_1(x) = \frac{1}{(x+2)}$$

$$\mathbb{D} = \mathbb{R} \setminus \{-2\}$$

$$f_2(x) = \frac{x^2 + 2x + 1}{x^2 - 4}$$
Nenner Null setzen

 $x^2 - 4 = 0$

 $x^2 - 4 = 0$ / + 4 $x = \pm \sqrt{4}$

 $x_1 = 2$ $x_2 = -2$

 $\mathbb{D} = \mathbb{R} \setminus \{-2; 2\}$

Symmetrie

Punktsymmetrie zum Ursprung:

$$f\left(-x\right) = -f\left(x\right)$$

Achsensymmetrie zur y-Achse:

$$f\left(-x\right) = f\left(x\right)$$

Schnittpunkte mit der x-Achse - Nullstellen

Zählerpolynom gleich Null setzen.

Zählerpolynom: Z(x) = 0

 z_1, z_2, z_3 ... Nullstellen des Zählers

(siehe Algebra - Gleichungen)

$$f_{2}(x) = \frac{x^{2} + 2x + 1}{x^{2} - 4}$$
 Zählerpolynom gleich Null setzen:
$$x^{2} + 2x + 1 = 0$$

$$x_{1/2} = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$x_{1/2} = \frac{-2 \pm \sqrt{0}}{2}$$

$$x_{1} = -1$$

$$x_{2} = -1$$

Verhalten im Unendlichen - Grenzwert - Asymptoten

• Zählergrad>Nennergrad

$$\lim f(x) = \pm \infty$$

$$\lim_{x \to -\infty} f(x) = \pm \infty$$

 $\lim_{x\to\infty}f(x)=\pm\infty\qquad\lim_{x\to-\infty}f(x)=\pm\infty$ Das Vorzeichen der Glieder mit der höchsten Potenzen und der Grad der höchsten Exponenten, bestimmen das Vorzeichen des Grenzwerts.

Grenzwert gegen plus Unendlich

$$\lim_{x \to \infty} \frac{a_n}{b_m} \cdot \frac{(\infty)^n}{(\infty)^m} = \pm \infty$$

Grenzwert gegen minus Unendlich

$$\lim_{x \to -\infty} \frac{a_n}{b_m} \cdot \frac{(-\infty)^n}{(-\infty)^m} = \pm \infty$$

• Zählergrad=Nennergrad+1

$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

Polynomdivision - schiefe Asymptote

• Zählergrad=Nennergrad

$$\lim_{x \to \pm \infty} f(x) = \frac{a_n}{b_m}$$

horizontale Asymptote: $y = \frac{a_n}{b_m}$

• Zählergrad<Nennergrad

$$\lim_{x \to \pm \infty} f(x) = 0$$

horizontale Asymptote: y = 0

 $Z\ddot{a}hlergrad < Nennergrad$

 $x_1 = -1$; 2-fache Nullstelle

$$\lim_{x \to \pm \infty} \frac{1}{x+2} = 0$$

Horizontale Asymptote: y = 0

 $Z\ddot{a}hlergrad = Nennergrad$

$$\lim_{x\to\pm\infty}\frac{1x^2+2x+1}{1x^2-4}=\frac{1}{1}=1$$
 Horizontale Asymptote: $y=1$

 $Z\ddot{a}hlergrad = Nennergrad+1$

$$f_3(x) = \frac{x^2 - 4}{x - 1^{\frac{1}{2}}}$$

$$\lim_{x \to \infty} \frac{1}{1} \cdot \frac{(\infty)^2}{(\infty)^1} = \infty$$

Zaniergrad = Nennergrad
$$f_3(x) = \frac{x^2 - 4}{x - 1\frac{1}{2}}$$

$$\lim_{x \to \infty} \frac{1}{1} \cdot \frac{(\infty)^2}{(\infty)^1} = \infty$$

$$\lim_{x \to -\infty} \frac{1}{1} \cdot \frac{(-\infty)^2}{(-\infty)^1} = -\infty$$

$$\lim_{x \to \infty} \frac{x^2 (1 - \frac{4}{x^2})}{x (1 - \frac{1\frac{1}{2}}{x})} = \infty$$

$$\lim_{x \to -\infty} \frac{x(1 - \frac{1}{2})}{x(1 - \frac{1}{2})} = -\infty$$

Polynom division:

$$(x^{2} -4): (x-1\frac{1}{2}) = x+1\frac{1}{2}$$

$$-(x^{2} -1\frac{1}{2}x)$$

$$\frac{1\frac{1}{2}x -4}{-(1\frac{1}{2}x -2\frac{1}{4})}$$

$$-1\frac{3}{4}$$

$$f_{3}(x) = x+1\frac{1}{2} + \frac{-1\frac{3}{4}}{r-1\frac{1}{2}}$$

Schiefe Asymptote: $y = x + 1\frac{1}{2}$

Verhalten an den Definitionslücken - Grenzwert - Asymptoten

$$\mathbb{D} = \mathbb{R} \setminus \{x_0, x_1..\}$$

$$x_0, x_1.. \quad \text{sind Definitionslücken von f(x)}$$

$$\lim_{x \to x_0} f(x) = \infty \Rightarrow$$
Vertikale Asymptote: $x = x_0$

$$\lim_{x \to -2^+} \frac{(x+2)}{(x+2)} = -\infty$$

$$\operatorname{Vertikale Asymptote (Polstelle):} \ x = -2$$

$$\lim_{x \to -2^+} \frac{(x+1)^2}{(x+2)(x-2)} = -\infty$$

$$\lim_{x \to -2^-} \frac{(x+1)^2}{(x+2)(x-2)} = \infty$$

$$\operatorname{Vertikale Asymptote (Polstelle):} \ x = -2$$

$$\lim_{x \to -2^+} \frac{(x+1)^2}{(x+2)(x-2)} = \infty$$

$$\lim_{x \to -2^+} \frac{(x+1)^2}{(x+2)(x-2)} = -\infty$$

$$\operatorname{Vertikale Asymptote (Polstelle):} \ x = 2$$

$$\operatorname{Vertikale Asymptote (Polstelle):} \ x = 2$$

Ableitung

Die Ableitungen bildet man durch die Quotientenregel: $f'(x) = \frac{Z'(x) \cdot N(x) - Z(x) \cdot N'(x)}{(N(x))^2}$

Die erste Ableitung f'(x) gibt die Steigung der Funktion an der Stelle x an.

Die zweite Ableitung f''(x) gibt die Krümmung der Funktion an der Stelle x an.

$$f_1'(x) = \frac{0 \cdot (x+2) - 1 \cdot 1}{(x+2)^2}$$

$$= \frac{0 - 1}{(x+2)^2}$$

$$= \frac{1}{(x+2)^2}$$

$$= \frac{1}{(x+2)^2}$$

$$f''(x) = \frac{0 \cdot (x^2 + 4x + 4) - (-1) \cdot (2x + 4)}{(x^2 + 4x + 4)^2}$$

$$= \frac{0 - (-2x - 4)}{(x^2 + 4x + 4)^2}$$

$$= \frac{2x + 4}{(x^2 + 4x + 4)^2}$$

$$= \frac{2x + 4}{(x^2 + 4x + 4)^2}$$

$$= \frac{2(x + 2)}{(x^2 + 4x + 4)^2}$$

$$= \frac{2(x + 2)}{(x + 2)^4}$$

$$= \frac{2}{(x + 2)^3}$$

$$f_2(x) = \frac{x^2 + 2x + 1}{x^2 - 4}$$

$$f'(x) = \frac{(2x + 2) \cdot (x^2 - 4) - (x^2 + 2x + 1) \cdot 2x}{(x^2 - 4)^2}$$

$$= \frac{(2x^3 + 2x^2 - 8x - 8) - (2x^3 + 4x^2 + 2x)}{(x^2 - 4)^2}$$

$$= \frac{-2x^2 - 10x - 8}{(x^2 - 4)^2}$$

Extremwerte und die 2. Ableitung

In den Extremwerten hat f(x) eine horizontale Tangente (HT).

• f'(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen $(x_0, x_1...)$.

In diesen Nullstellen $(x_0,x_1..)$ kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Einsetzen der Nullstellen $x_0, x_1...$ in die 2. Ableitung (Hinreichende Bedingung)

- $f''(x_0) > 0(LK) \Rightarrow \text{Tiefpunkt (Minimum) bei } x_0$
- $f''(x_0) < 0(RK) \Rightarrow \text{Hochpunkt (Maximum) bei } x_0$
- $f''(x_0) = 0 \land f'''(x_0) \neq 0 \Rightarrow \text{Terrassenpunkt}$

$$f_2'(x) = \frac{-2x^2 - 10x - 8}{x^4 - 8x^2 + 16} = 0$$

$$-2x^2 - 10x - 8 = 0$$

$$x_{1/2} = \frac{+10 \pm \sqrt{(-10)^2 - 4 \cdot (-2) \cdot (-8)}}{2 \cdot (-2)}$$

$$x_{1/2} = \frac{+10 \pm \sqrt{36}}{-4}$$

$$x_{1/2} = \frac{10 \pm 6}{-4}$$

$$x_{1/2} = \frac{10 + 6}{-4}$$

$$x_{1/2} = \frac{10 - 6}{-4}$$

$$x_{1/2}$$

Extremwerte und das Monotonieverhalten

Extremwerte sind Hochpunkte (Maxima) bzw. Tiefpunkte (Minima) der Funktion. In den Extremwerten hat f(x) eine horizontale Tangente (HT).

• f'(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 1. Ableitung bestimmen $(x_0, x_1..)$.

In diesen Nullstellen $(x_0, x_1..)$ kann die Funktion einen Hochpunkt, Tiefpunkt oder Terrassenpunkt (Sattelpunkt) besitzen.

Zur Unterscheidung werden die Nullstellen in die Vorzeichentabelle eintragen. Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von f'(x) in die Tabelle eintragen. (Hinreichende Bedingung)

• Hochpunkt (HP)

Monotonoieverhalten ändert sich von streng monoton steigend (sms) nach streng monoton fallend (smf).

Vorzeichenwechsel (VZW) der 1. Ableitung f'(x) von Plus nach Minus

nach minus.						
	x <	x_1	< x			
f'(x)	+	0	_			
Graph	sms	HP	smf			

• Tiefpunkt (TP)

Monotonoieverhalten ändert sich von streng monoton fallend (smf) nach streng monoton steigend (sms).

Vorzeichenwechsel (VZW) der 1. Ableitung f'(x) von Minus nach Plus.

	x <	x_1	< x
f'(x)	_	0	+
Graph	smf	TP	sms

• Terrassenpunkt (TEP)

Monotonoieverhalten ändert sich nicht. Kein Vorzeichenwechsel (VZW) der 1. Ableitung.

		x <	x_1	< x		x <	x_1	< x
ſ	f'(x)	+	0	+	f'(x)	_	0	_
ſ	Graph	sms	TEP	sms	Graph	smf	TEP	smf

Die Ränder des Definitionsbereichs (Definitionslücken) müssen in die Tabelle mit eingetragen werden.

Wendepunkt und die 3. Ableitung

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.

• f''(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 2. Ableitung bestimmen $(x_0, x_1..)$.

Einsetzen der Nullstellen x_0, x_1 .. in die 3. Ableitung (Hinreichende Bedingung)

• $f'''(x_0) \neq 0 \Rightarrow \text{Wendepunkt}$

$$f'_1(x) = \frac{-1}{(x+2)^2}$$

Zähler = 0
keine Lösung

Nullstellen des Nenners aus f(x) übernehmen $x_2 = -2$; 1-fache Nullstelle

$$\begin{array}{c|cccc} & x < & -2 & < x \\ \hline f'(x) & - & 0 & - \end{array}$$

$$x \in]-\infty; -2[\cup]-2; \infty[f'(x) < 0 \text{ smf}$$

Wendepunkte und das Krümmungsverhalten

Im Wendepunkt und im Flachpunkt ist das Krümmungsverhalten gleich Null.

• f''(x) = 0 (Notwendige Bedingung)

Die Nullstellen der 2. Ableitung bestimmen $(x_0, x_1..)$. Zur Unterscheidung zwischen Wendepunkt und Flachpunkt werden die Nullstellen in die Vorzeichentabelle eintragen. (Hinreichende Bedingung) Einen Wert kleiner bzw. größer als die Nullstelle wählen und das Vorzeichen von f''(x) in die Tabelle eintragen.

• Wendepunkt (WP)

Das Krümmungsverhalten ändert sich von rechtsgekrümmt (RK) nach linksgekrümmt (LK) oder von linksgekrümmt nach rechtsgekrümmt.

Vorzeichenwechsel (VZW) der 2. Ableitung f''(x) von Plus nach Minus oder von Minus nach Plus

HUCH IVI	den winds oder von winds haen i ids.						
	x <	x_1	< x		x <	x_1	< x
f''(x)	+	0	_	$f^{\prime\prime}(x)$	_	0	+
Graph	LK	WP	RK	Graph	RK	WP	LK

• Flachpunkt (FP)

Krümmungsverhalten ändert sich nicht.

Kein Vorzeichenwechsel (VZW) der 2. Ableitung

	x <	x_1	< x		x <	x_1	< x
f''(x)	+	0	+	$f^{\prime\prime}(x)$	_	0	_
Graph	LK	FP	LK	Graph	RK	FP	RK

Die Ränder des Definitionsbereichs (Definitionslücken) müssen in die Tabelle mit eingetragen werden.

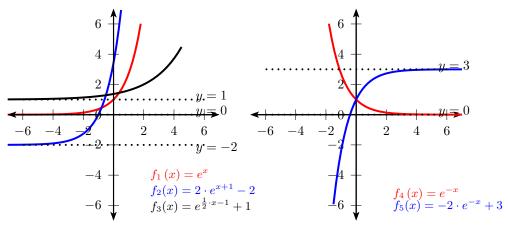
•Krümmung

$$f''(x) = \frac{2}{(x+2)^3}$$
$$Zhler = 0$$

keine Lösung

Nullstelle des Nenners aus f(x) übernehmen

$$x_3 = -2;$$
 1-fache Nullstelle


$$x \in]-2; \infty[$$
 $f''(x) > 0$ linksgekrümmt

$$x \in]-\infty; -2[$$
 $f''(x) < 0$ rechtsgekrümmt

Interaktive Inhalte:

Wertetable hier klicken Funktionsgraph

Exponentialfunktion (Basis e)

Formen der Exponentialfunktion

Exponentialfunktion

$$f(x) = e^x$$

Allgemeine Exponentialfunktion

$$f(x) = ae^{b(x-c)} + d$$

(siehe Funktionen - Exponentialfunktion)

$$f_2(x) = 2 \cdot e^{x+1} - 2$$

 $f_4(x) = e^{-x}$
 $f_5(x) = -2 \cdot e^{-x} + 3$

Definitions- und Wertebereich

$$f(x) = e^{x}$$

$$\mathbb{D} = \mathbb{R} \qquad \mathbb{W} = \mathbb{R}^{+}$$

$$f(x) = ae^{b(x-c)} + d$$

$$\mathbb{D} = \mathbb{R}$$

$$a > 0 \qquad \mathbb{W} = [d; \infty[$$

$$a < 0 \qquad \mathbb{W} =] - \infty; d]$$

$$f_2(x) = 2 \cdot e^{x+1} - 2 \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} = [-2; \infty[$$

$$f_4(x) = e^{-x} \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{R}^+$$

$$f_5(x) = -2 \cdot e^{-x} + 3 \qquad \mathbb{D} = \mathbb{R} \qquad \mathbb{W} =]-\infty; 3]$$

Schnittpunkte mit der x-Achse - Nullstellen

$$f(x) = e^x \qquad e^x > 0 \Rightarrow \text{keine Nullstellen}$$

$$f(x) = ae^{(b(x-c))} + d$$

$$ae^{b(x-c)} + d = 0 \qquad / - d$$

$$ae^{b(x-c)} = -d \qquad / : a$$

$$e^{b(x-c)} = \frac{-d}{a} \qquad / \ln$$

$$\frac{-d}{a} > 0$$

$$b(x-c) = \ln\left(\frac{-d}{a}\right) \qquad / : b \qquad / + c$$

$$x = \frac{\ln\left(\frac{-d}{a}\right)}{b} + c$$

$$\frac{-d}{a} \le 0 \qquad \Rightarrow \text{keine Nullstellen}$$

$$f_2(x) = 2 \cdot e^{x+1} - 2$$

$$2 \cdot e^{(x+1)} - 2 = 0$$

$$2 \cdot e^{(x+1)} - 2 = 0 / + 2$$

$$2 \cdot e^{(x+1)} = +2 / : 2$$

$$e^{(x+1)} = 1 / \ln$$

$$x + 1 = \ln(1) / - 1$$

$$x = -1$$

$$f_3(x) = e^{\frac{1}{2} \cdot x - 1} + 1$$

$$e^{\frac{1}{2} \cdot x - 1} + 1 = 0 / - 1$$

$$e^{\frac{1}{2} \cdot x - 1} = -1$$

$$-1 < 0 \Rightarrow \text{ keine Nullstellen}$$

Grenzwert - Asymptoten

$$f(x) = e^x$$

$$\lim_{x \to \infty} e^x = +\infty$$

$$\lim_{x \to -\infty} e^x = 0 \Rightarrow \text{ horizontale Asymptote y=0}$$

$$f(x) = ae^{b(x-c)} + d$$

$$\lim_{x \to \infty} ae^{b(x-c)} + d$$

$$\lim_{x \to \infty} b(\infty - c) = \infty \quad \lim_{x \to \infty} e^\infty = \infty \quad \lim_{x \to \infty} a\infty + d = \infty$$

$$\lim_{x \to \infty} b(-\infty - c) = -\infty \quad \lim_{x \to \infty} e^{-\infty} = 0$$

$$\lim_{x \to -\infty} b(-\infty - c) = -\infty \quad \lim_{x \to -\infty} e^{-\infty} = 0$$

$$\lim_{x \to -\infty} a \cdot 0 + d = d \quad \Rightarrow \text{HA: } y = d$$

$$\lim_{x \to \infty} ae^{b(x-c)} + d = \infty \quad \text{keine}$$

$$\lim_{x \to \infty} ae^{b(x-c)} + d = d \quad y = d$$

$$\lim_{x \to \infty} ae^{b(x-c)} + d = d \quad y = d$$

$$\lim_{x \to \infty} ae^{b(x-c)} + d = d \quad y = d$$

$$\lim_{x \to \infty} ae^{b(x-c)} + d = d \quad y = d$$

$$\lim_{x \to \infty} ae^{b(x-c)} + d = d \quad y = d$$

$$\lim_{x \to -\infty} ae^{b(x-c)} + d = d \quad y = d$$

$$\lim_{x \to -\infty} ae^{b(x-c)} + d = d \quad y = d$$

$$\lim_{x \to -\infty} ae^{b(x-c)} + d = 0 \quad \text{keine}$$

$$\lim_{x \to -\infty} ae^{b(x-c)} + d = \infty \quad \text{keine}$$

$$\lim_{x \to -\infty} ae^{b(x-c)} + d = \infty \quad \text{keine}$$

$$\lim_{x \to -\infty} ae^{b(x-c)} + d = \infty \quad \text{keine}$$

$$\lim_{x \to -\infty} ae^{b(x-c)} + d = \infty \quad \text{keine}$$

$$\lim_{x \to -\infty} ae^{b(x-c)} + d = \infty \quad \text{keine}$$

$$\lim_{x \to -\infty} ae^{b(x-c)} + d = \infty \quad \text{keine}$$

$$\lim_{x \to -\infty} ae^{b(x-c)} + d = \infty \quad \text{keine}$$

$$f_{2}(x) = 2 \cdot e^{x+1} - 2$$

$$\lim_{x \to \infty} 2 \cdot e^{x+1} - 2$$

$$\lim_{x \to \infty} \infty + 1 = \infty \quad \lim_{x \to \infty} e^{\infty} = \infty \quad \lim_{x \to \infty} 2 \cdot \infty - 2 = \infty$$

$$\lim_{x \to \infty} 2 \cdot e^{x+1} - 2 = \infty$$

$$\lim_{x \to \infty} 2 \cdot e^{x+1} - 2 \lim_{x \to -\infty} (-\infty + 1) = -\infty \quad \lim_{x \to -\infty} e^{-\infty} = 0$$

$$\lim_{x \to -\infty} 2 \cdot 0 - 2 = -2$$

$$\lim_{x \to \infty} 2 \cdot e^{x+1} - 2 = -2 \quad HA : y = -2$$

$$f_{4}(x) = e^{-x}$$

$$\lim_{x \to \infty} e^{-x} = 0 \quad HA : y = 0$$

$$\lim_{x \to \infty} e^{-x} = +\infty$$

$$f_{5}(x) = -2 \cdot e^{-x} + 3$$

$$\lim_{x \to \infty} -2 \cdot e^{-x} + 3 = +\infty$$

$$\lim_{x \to -\infty} -2 \cdot e^{-x} + 3 = +\infty$$

Ableitung

$$f(x) = e^{x} \qquad f'(x) = e^{x} \qquad f''(x) = e^{x}$$
Ableitung mit der Kettenregel
$$f(x) = e^{bx} \qquad f'(x) = be^{bx} \qquad f''(x) = b^{2}e^{bx}$$

$$f(x) = ae^{b(x-c)} + d \qquad f'(x) = a \cdot be^{b(x-c)}$$

$$f''(x) = a \cdot b^{2}e^{b(x-c)}$$

$$f_2(x) = 2 \cdot e^{x+1} - 2 \qquad f'_2(x) = 2 \cdot e^{x+1} \qquad f''_2(x) = 2 \cdot e^{x+1}$$

$$f_4(x) = e^{-x} \qquad f'_4(x) = -e^{-x} \qquad f'_4(x) = e^{-x}$$

$$f_5(x) = -2 \cdot e^{-x} + 3 \qquad f'_5(x) = 2 \cdot e^{-x}$$

$$f_3(x) = e^{\frac{1}{2} \cdot x - 1} + 1 \qquad f'_3(x) = \frac{1}{2} e^{\frac{1}{2} \cdot x - 1}$$

$$f''_3(x) = \frac{1}{4} e^{\frac{1}{2} \cdot x - 1}$$

Monotonieverhalten

$$f(x) = e^{x} \qquad f'(x) = e^{x}$$

$$e^{x} > 0 \Rightarrow \text{streng monoton steigend}$$

$$f(x) = ae^{b(x-c)} + d$$

$$f'(x) = a \cdot be^{b(x-c)}$$

$$e^{b(x-c)} > 0$$

$$a \cdot b > 0 \Rightarrow \text{streng monoton steigend (sms)}$$

$$a \cdot b < 0 \Rightarrow \text{streng monoton fallend (smf)}$$

$$a \cdot b < 0 \Rightarrow \text{streng monoton fallend (smf)}$$

$$a \cdot b < 0 \Rightarrow \text{streng monoton fallend (smf)}$$

$$a \cdot b = 0$$

$$a \cdot$$

sms

$$f_2'(x) = 2 \cdot e^{x+1} > 0 \Rightarrow \text{ sms}$$

$$f_4'(x) = -e^{-x} < 0 \Rightarrow \text{ smf}$$

$$f_5'(x) = 2 \cdot e^{-x} > 0 \Rightarrow \text{ sms}$$

$$f_3'(x) = \frac{1}{2}e^{\frac{1}{2} \cdot x - 1} > 0 \Rightarrow \text{ sms}$$

Ableitung

$$f(x) = e^{x} f'(x) = e^{x}$$
Ableitung mit Kettenregel
$$f(x) = e^{ax} f'(x) = ae^{ax}$$

$$f(x) = ae^{b(x-c)} + d f'(x) = a \cdot be^{b(x-c)}$$

$$f_2(x) = 2 \cdot e^{x+1} - 2 \qquad f'_2(x) = 2 \cdot e^{x+1}$$

$$f_4(x) = e^{-x} \qquad f'_4(x) = -e^{-x}$$

$$f_5(x) = -2 \cdot e^{-x} + 3 \qquad f'_5(x) = 2 \cdot e^{-x}$$

Krümmungsverhalten

$$f(x) = e^x$$
 $f''(x) = e^x$
 $e^x > 0 \Rightarrow \text{linksgekrümmt (LK)}$
 $f(x) = ae^{b(x-c)} + d$
 $f''(x) = a \cdot b^2 e^{b(x-c)}$
 $e^{b(x-c)} > 0$
 $a > 0 \Rightarrow \text{linksgekrümmt (LK)}$
 $a < 0 \Rightarrow \text{rechtsgekrümmt (RK)}$

 $f_2''(x) = 2 \cdot e^{x+1} > 0 \Rightarrow \text{LK}$ $f_4''(x) = e^{-x} > 0 \Rightarrow \text{LK}$ $f_5''(x) = -2 \cdot e^{-x} < 0 \Rightarrow \text{RK}$ $f_3''(x) = \frac{1}{4}e^{\frac{1}{2} \cdot x - 1} > 0 \Rightarrow \text{LK}$

Stammfunktion von f(x) - unbestimmtes Integral

$$f(x) = e^{x} F(x) = e^{x} + k$$

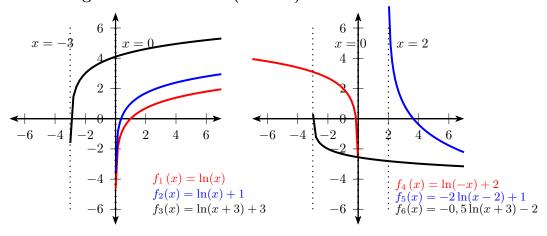
$$f(x) = ae^{b(x-c)} F(x) = \frac{a}{b}e^{b(x-c)} + k$$

$$f_2(x) = 2 \cdot e^{x+1} - 2 \qquad F_2(x) = 2 \cdot e^{x+1} - 2x + c$$

$$f_4(x) = e^{-x} \qquad F_4(x) = -e^{-x} + c$$

$$f_5(x) = -2 \cdot e^{-x} + 3 \qquad F_5(x) = 2 \cdot e^{-x} + 3x + c$$

$$f_3(x) = e^{\frac{1}{2} \cdot x - 1} + 1$$


$$F_3(x) = \frac{1}{2} e^{\frac{1}{2} \cdot x - 1} + x + c = 2e^{\frac{1}{2} \cdot x - 1} + x + c$$

Interaktive Inhalte:

Funktionsgraph

Wertetable

4.4.4 Logarithmusfunktion (Basis e)

Formen der Logarithmusfunktion

Logarithmusfunktion

$$f(x) = \ln x$$

Allgemeine Logarithmusfunktion

$$f(x) = a\ln(b(x-c)) + d$$

 $({\rm siehe\ Funktionen\ -\ Logarithmus funktion})$

$$f_1(x) = \ln(x)$$

$$f_2(x) = \ln(x) + 1$$

$$f_3(x) = \ln(x+3) + 3$$

$$f_4(x) = \ln(-x) + 2$$

$$f_5(x) = -2\ln(x-2) + 1$$

$$f_6(x) = -0, 5\ln(x+3) - 2$$

Definitions- und Wertebereich

$$f(x) = \ln x$$

$$\mathbb{W} = \mathbb{R}$$

$$\mathbb{D} = \mathbb{R}^+$$

$$f(x) = a \ln b(x - c) + d$$

$$\mathbb{W} = \mathbb{R}$$
Definitions be reich: $bx - c > 0$

$$\bullet b > 0 \qquad \mathbb{D} =]c; \infty[$$

$$\bullet b < 0 \qquad \mathbb{D} =] - \infty; c[$$

```
f_{1}(x) = \ln(x) \qquad \mathbb{D} = \mathbb{R}^{+}
f_{2}(x) = \ln(x) + 1 \qquad \mathbb{D} = \mathbb{R}^{+}
f_{3}(x) = \ln(x+3) + 3 \qquad \mathbb{D} = ] - 3; \infty[
f_{4}(x) = \ln(-x) + 2 \qquad \mathbb{D} = \mathbb{R}^{-}
f_{5}(x) = -2\ln(x-2) + 1 \qquad \mathbb{D} = ]2; \infty[
f_{6}(x) = -0, 5\ln(x+3) - 2 \qquad \mathbb{D} = ] - 3; \infty[
```

Schnittpunkte mit der x-Achse - Nullstellen

$$f(x) = \ln(x)$$

$$\ln(x) = 0 / e$$

$$x = e^{0}$$

$$x = 1$$

$$f(x) = a \ln(b(x - c)) + d$$

$$a \ln(b(x - c)) + d = 0 / - d$$

$$a \ln(b(x - c)) = -d / : a$$

$$\ln(b(x - c)) = \frac{-d}{a} / e$$

$$b(x - c) = e^{\left(\frac{-d}{a}\right)} / : b / + c$$

$$x = \frac{e^{\left(\frac{-d}{a}\right)}}{b} + c$$

$$f_3(x) = \ln(x+3) + 3$$

$$\ln(x+3) + 3 = 0$$

$$\ln(x+3) + 3 = 0 / -3$$

$$\ln(x+3) = -3 /e^{-x}$$

$$x+3 = e^{-3} / -3$$

$$x = e^{-3} -3$$

$$x = -2,95$$

$$f_6(x) = -0,5 \ln(x+3) - 2$$

$$-\frac{1}{2} \cdot \ln(x+3) - 2 = 0$$

$$-\frac{1}{2} \cdot \ln(x+3) - 2 = 0 / + 2$$

$$-\frac{1}{2} \cdot \ln(x+3) = 2 / -\frac{1}{2}$$

$$\ln(x+3) = -4 /e^{-x}$$

$$x+3 = e^{-4} / -3$$

$$x = e^{-4} -3$$

$$x = -2,98$$

Grenzwert - Asymptoten

$$f(x) = \ln(x)$$

$$\lim_{x \to 0^+} \ln(x) = -\infty \Rightarrow \text{ vertikale Asymptote: } x = 0$$

$$\lim_{x \to \infty} \ln(x) = \infty$$

$$f(x) = a \ln(b(x - c)) + d$$
Schrittweise Berechnung für $b > 0$ und $a > 0$:
$$\lim_{x \to \infty} b(\infty - c) = \infty \quad \lim_{x \to \infty} \ln \infty = \infty \quad \lim_{x \to \infty} a\infty + d = \infty$$

$$\lim_{x \to c^+} b(c^+ - c) = 0^+ \quad \lim_{x \to 0^+} \ln 0^+ = -\infty$$

$$\lim_{x \to 0^+} a \cdot (-\infty) + d = -\infty \quad \Rightarrow \text{VA: } x = c$$

$$\frac{a}{a} \quad b \quad \text{Grenzwert} \to \pm \infty \quad \text{Asymptote}$$

$$+ \quad + \quad \lim_{x \to \infty} a \ln b(x - c) + d = \infty \quad \text{keine}$$

$$- \quad + \quad \lim_{x \to -\infty} a \ln b(x - c) + d = \infty \quad \text{keine}$$

$$- \quad - \quad \lim_{x \to -\infty} a \ln b(x - c) + d = -\infty \quad \text{keine}$$

$$+ \quad - \quad \lim_{x \to -\infty} a \ln b(x - c) + d = -\infty \quad \text{keine}$$

$$+ \quad + \quad \lim_{x \to -\infty} a \ln b(x - c) + d = -\infty \quad \text{keine}$$

$$+ \quad + \quad \lim_{x \to -\infty} a \ln b(x - c) + d = -\infty \quad x = c$$

$$+ \quad + \quad \lim_{x \to c^+} a \ln b(x - c) + d = -\infty \quad x = c$$

$$- \quad + \quad \lim_{x \to c^+} a \ln b(x - c) + d = -\infty \quad x = c$$

$$- \quad - \quad \lim_{x \to c^-} a \ln b(x - c) + d = -\infty \quad x = c$$

$$- \quad - \quad \lim_{x \to c^-} a \ln b(x - c) + d = -\infty \quad x = c$$

$$- \quad - \quad \lim_{x \to c^-} a \ln b(x - c) + d = -\infty \quad x = c$$

$$- \quad - \quad \lim_{x \to c^-} a \ln b(x - c) + d = -\infty \quad x = c$$

$$- \quad - \quad \lim_{x \to c^-} a \ln b(x - c) + d = -\infty \quad x = c$$

$$- \quad - \quad \lim_{x \to c^-} a \ln b(x - c) + d = -\infty \quad x = c$$

$$- \quad - \quad \lim_{x \to c^-} a \ln b(x - c) + d = -\infty \quad x = c$$

$f_5(x) = -2\ln(x-2) + 1$ $\mathbb{D} =]2; \infty[$ $\lim_{x \to \infty} -2\ln(x-2) + 1$
$\lim_{\substack{x \to \infty \\ x \to \infty}} \infty - 2 = \infty \lim_{\substack{x \to \infty \\ \text{lim}}} \ln \infty = \infty \lim_{\substack{x \to \infty \\ \text{lim}}} -2 \cdot \infty + 1 = -\infty$
$\lim_{x \to 2^+} -2\ln(x-2) + 1$
$\lim_{x \to 2^+} (2^+ - 2) = 0^+ \lim_{x \to 2^+} \ln 0^+ = -\infty$ $\lim_{x \to 2^+} -2 \cdot (-\infty) - 2 = \infty$
$\lim_{\substack{x \to 2^+ \\ f_4(x) = \ln(-x) + 2}} -2\ln(x-2) + 1 = \infty \qquad VA : x = 2$
$\lim_{x \to -\infty} \ln(-x) + 2 = \infty$ $\lim_{x \to -\infty} \ln(-x) + 2 = -\infty \qquad VA : x = 0$
$\lim_{x\to 0^-} \mathbf{m}(x) + 2 = \infty \qquad \forall m = 0$

Ableitung

$$f(x) = \ln(x) \qquad f'(x) = \frac{1}{x} = x^{-1}$$

$$f''(x) = -x^{-2} = \frac{-1}{x^2}$$
Ketten- und Quotientenregel:
$$f(x) = \ln bx \qquad f'(x) = \frac{b}{bx} = \frac{1}{x}$$

$$f''(x) = -x^{-2} = \frac{-1}{x^2}$$

$$f(x) = a \ln(b(x - c)) + d \qquad f'(x) = \frac{a \cdot b}{b(x - c)}$$

$$f''(x) = \frac{-a \cdot b^2}{(b(x - c))^2}$$

$$f_2(x) = \ln(x) + 1 \qquad f_2'(x) = \frac{1}{x} = x^{-1}$$

$$f_2''(x) = -x^{-2} = \frac{-1}{x^2}$$

$$f_3(x) = \ln(x+3) + 3 \qquad f_3'(x) = \frac{1}{x+3} = (x+3)^{-1}$$

$$f_3''(x) = -(x+3)^{-2} = \frac{-1}{(x+3)^2}$$

$$f_4(x) = \ln(-x) + 2 \qquad f_4'(x) = \frac{1}{x} = x^{-1}$$

$$f_4''(x) = -x^{-2} = \frac{-1}{x^2}$$

$$f_5(x) = -2\ln(x-2) + 1 \qquad f_5'(x) = \frac{-2}{(x-2)} = -2(x-2)^{-1}$$

$$f_5''(x) = 2(x-2)^{-2} = \frac{2}{(x-2)^2}$$

Monotonieverhalten

$$f(x) = \ln(x) \qquad f'(x) = \frac{1}{x} = x^{-1}$$

$$\frac{1}{x} \Rightarrow \text{ streng monoton steigend} \qquad \mathbb{D} = \mathbb{R}^+$$

$$f(x) = a \ln(b(x-c)) + d \qquad f'(x) = \frac{a \cdot b}{b(x-c)}$$

$$\frac{b(x-c) > 0}{a \quad b \quad \text{Monotonieverhalten}}$$

$$\frac{a \quad b \quad \text{Monotonieverhalten}}{+ \quad + \quad + \quad \text{sms}}$$

$$\frac{b \quad \text{smf}}{- \quad + \quad \text{smf}}$$

$$\frac{b \quad \text{smf}}{- \quad + \quad \text{smf}}$$

$$f'_{2}(x) = \frac{1}{x} > 0 \Rightarrow \text{ sms}$$

$$f'_{3}(x) = \frac{1}{x+3} > 0 \Rightarrow \text{ sms}$$

$$f'_{5}(x) = \frac{-2}{(x-2)} < 0 \Rightarrow \text{ smf}$$

Krümmungsverhalten

$$f(x) = \ln(x) \qquad f''(x) = -x^{-2} = \frac{-1}{x^2}$$

$$\frac{-1}{x^2} < 0 \Rightarrow \text{rechtsgekrümmt (RK)}$$

$$f(x) = a \ln(b(x-c)) + d \qquad f''(x) = \frac{-a \cdot b^2}{(b(x-c))^2}$$

$$(b(x-c))^2 > 0$$

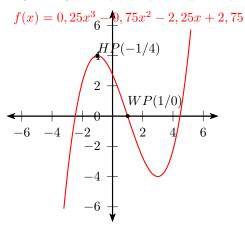
$$a > 0 \Rightarrow \text{rechtsgekrümmt (RK)}$$

$$a < 0 \Rightarrow \text{linkssgekrümmt (LK)}$$

$$f_2''(x) = -x^{-2} = \frac{-1}{x^2} < 0 \Rightarrow RK$$

 $f_3''(x) = -(x+3)^{-2} = \frac{-1}{(x+3)^2} < 0 \Rightarrow RK$
 $f_5''(x) = 2(x-2)^{-2} = \frac{2}{(x-2)^2} > 0 \Rightarrow LK$

Stammfunktion von f(x) - unbestimmtes Integral


$$f(x) = \ln(x) \qquad F(x) = x \ln(x) - x + c$$

Interaktive Inhalte:

Funktionsgraph Wertetable

Aufstellen von Funktionsgleichungen

4.5.1 Ganzrationale Funktion

Eine ganzrationale Funktion vom Grad n ist durch n+1 Bedingungen eindeutig festgelegt. f(x) $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} \dots + a_2 x^2 + a_1 x^1 + a_0$

Um die n+1 Koeffizienten $(a_n, a_{n-1}.., a_0)$ berechnen zu können, sind n+1 Gleichungen (n+1 Bedingungen) nötig.

Funktion vom Grad 2

Um die 3 Koeffizienten (a,b,c) berechnen zu können, sind 3 Gleichungen (3 Bedingungen) nötig.

$$f(x) = ax^2 + bx + c$$

$$f'(x) = 2ax + b$$

Funktion vom Grad 3

Um die 4 Koeffizienten (a,b,c,d) berechnen zu können, sind 4 Gleichungen (4 Bedingungen) nötig. $f(x) = ax^3 + bx^2 + cx + d$

$$f'(x) = 3ax^2 + 2bx + c$$

$$f''(x) = 6ax + 2b$$

Funktion vom Grad 4

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

$$f'(x) = 4ax^3 + 3bx^2 + 2cx + d$$

$$f''(x) = 12ax^2 + 6bx + 2c$$

Gesucht ist ein Polynom 3. Grades, das bei x = 1 einen Wendepunkt hat, im Punkt P(-1/4) ein Extremum besitzt und bei x = 1 die x-Achse schneidet.

Polynom 3. Grades

$$f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$$

$$f'(x) = 3a \cdot x^2 + 2b \cdot x + c$$

$$f''(x) = 6a \cdot x + 2b$$

Um die 4 Koeffizienten (a,b,c,d) berechnen zu können, sind 4 Gleichungen nötig.

1. Bedingung: Wendepunkt bei x=1

$$f''(1) = 0$$
 $6a \cdot 1 + 2b = 0$

2. Bedingung: Punkt
$$P(-1/4)$$

$$f(-1) = 4$$
 $a \cdot (-1)^3 + b \cdot (-1)^2 + c \cdot (-1) + d = 4$

3. Bedingung: Extremwert an der Stelle
$$x_0 = 1$$

$$f'(-1) = 0$$
 $3a \cdot (-1)^2 + 2b \cdot (-1) + c = 0$

4.
Bedingung: Nullstelle an der Stelle
$$x_0 = 1$$

$$f(1) = 0$$
 $a \cdot 1^3 + b \cdot 1^2 + c \cdot 1 + d = 0$

Lineares Gleichungssystem lösen:

$$6a + 2b = 0$$

$$-a+b-c+d=4$$

$$3a - 2b + c = 0$$

$$a+b+c+d=0$$

$$a = \frac{1}{4}$$

$$b = -\frac{3}{4}$$

$$c = -2\frac{1}{2}$$

188

$$c = -2\frac{1}{4} \\ d = 2\frac{3}{4}$$

Funktionsgleichung:

$$f(x) = \frac{1}{4}x^3 - \frac{3}{4}x^2 - 2\frac{1}{4}x + 2\frac{3}{4}$$

Bedingungen für die Funktion	Gleichung
	_
Punkt $P(x_0/y_0)$	$f(x_0) = y_0$
Nullstelle an der Stelle x_0	$f(x_0) = 0$
Punkt auf der y-Achse y_0	$f(0) = y_0$
Extremwert an der Stelle x_0	$f'(x_0) = 0$
Horizontale Tangente an der Stelle	$f'(x_0) = 0$
x_0	
Berührpunkt der x-Achse an der	$f(x_0) = 0$
Stelle x_0	$f'(x_0) = 0$
20010 00	$y_0 = mx_0 + t$
Tangente: $y = mx + t$ in x_0	$f(x_0) = y_0$
Tangenter y mar v m wo	$f'(x_0) = g_0$ $f'(x_0) = m$
	$y_0 = mx_0 + t$
Normale: $y = mx + t$ in x_0	$ \begin{cases} y_0 - mx_0 + \iota \\ f(x_0) = y_0 \end{cases} $
Normale. $y = mx + v \text{ in } x_0$	
Wendenwalst on den Ctelle o	$f'(x_0) = -\frac{1}{m}$
Wendepunkt an der Stelle x_0	$f''(x_0) = 0$
Terrassenpunkt an der Stelle x_0	$f'(x_0) = 0$
G	$f''(x_0) = 0$
Steigung m an der Stelle x_0	$f'(x_0) = m$
$\operatorname{Hoch-/Tiefpunkt}(x_0/y_0)$	$f(x_0) = y_0$
, - (3, 8 3,	$f'(x_0) = 0$
	$f(x_0) = y_0$
Terrassenpunkt (x_0/y_0)	$f'(x_0) = 0$
	$f''(x_0) = 0$
Wendepunkt (x_0/y_0)	$f(x_0) = y_0$
	$f''(x_0) = 0$
	$y_0 = mx_0 + t$
Wendetangente: $y = mx + t$ in x_0	$f(x_0) = y_0$
We independent $y = m\omega + v$ in ω_0	$f'(x_0) = m$
	$f''(x_0) = 0$
Steigung m im Punkt $P(x_0/y_0)$	$f(x_0) = y_0$
because in in 1 unto 1 (x_0/y_0)	$f'(x_0) = m$
Achsensymmetrie $f(x) = f(-x)$	Glieder mit
	ungeraden
	Exponenten
	entfallen
Punktsymmetrie $f(x) = -f(-x)$	Glieder mit
	geraden
	Exponenten
	entfallen

Interaktive Inhalte:

Funktionsgraph Wertetable Terme aufstellen

Stochastik

Statistik 5.1

Mittelwert - Median - Modalwert

Noten in Mathematik: 4,3,5,3,3,5,2,4

Arithmetisches Mittel

Durchschnittswert \bar{x} der Datenreihe $x_1, x_2, x_3....x_n$

n - Anzahl der Elemente

$$\bar{x} = \frac{1}{n}(x_1 + x_2 + x_3....x_n)$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Mittelwert:
$$\bar{x} = \frac{1}{8}(4+3+5+3+3+5+2+4) = 3,625$$

Median

Zentralwert der geordneten Datenreihe

n - Anzahl der Elemente

 $x_{med} = \frac{x_{n/2} + x_{n/2+1}}{2}$ wenn
n gerade

 $\boldsymbol{x}_{med} = \boldsymbol{x}_{(n+1)/2}$ wenn
n ungerade

geordnete Datenreihe

_	
x_1	2
x_2	3
x_3	3
x_4	3
x_5	4
x_6	4
x_7	5
x_8	5

Median:
$$x_{med} = \frac{3+4}{2} = 3,5$$

Spannweite

Differenz zwischen dem größten und kleinsten Wert der geordneten Datenreihe

$$d = x_{max} - x_{min}$$

Spannweite:

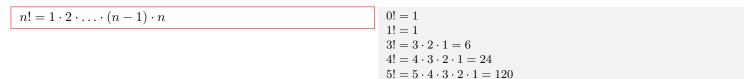
$$d = 5 - 2 = 3$$

Häufigkeitstabelle - Modalwert

Wert aus der Datenreihe, der am häufigsten vorkommt

Häufigkeit					
Anzahl	Noten				
1	2				
3	3				
2	4				
2 5					
- 0					

 $x_{Mod} = 3$


Interaktive Inhalte:

Statistik

5.2 Kombinatorik

5.2.1 Grundlagen

Fakultät

Binomialkoeffizient

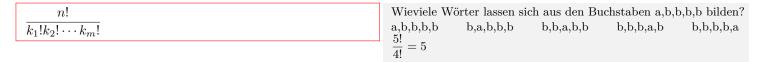
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad n \text{ ""bber } k$$

$$\binom{n}{k} = \binom{n!}{n} = 1 \qquad \binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{0} = \binom{n}{n} = 1 \qquad \binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{0} = \binom{n}{n} = 1 \qquad \binom{n}{k} = \binom{n}{n-k}$$

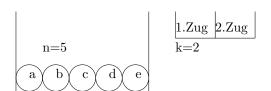
$$\binom{n}{0} = \binom{n}{0} = 1 \qquad \binom{n}{k} = \binom{n}{n-k}$$


Interaktive Inhalte: n!

5.2.2 Anzahl der Anordungen - Permutation

Anzahl der Anordungen ohne Wiederholung - alle Elemente verschieden

 $n! = 1 \cdot 2 \cdot \ldots \cdot (n-1) \cdot n$ Wieviele Wörter lassen sich aus den Buchstaben a,b,c bilden? abc acb bac bca cab cba $3! = 3 \cdot 2 \cdot 1 = 6$


Anzahl der Anordungen ohne Wiederholung - nicht alle Elemente verschieden

Interaktive Inhalte: n!

5.2.3 Auswahl mit Beachtung der Reihenfolge - Variation

Ziehen von 2 Kugeln aus 5 verschiedenen Kugeln

Auswahl von k Elementen aus n unterschiedlichen Objekten mit Berücksichtigung der Reihenfolge

Auswahl ohne Wiederholung der Elemente

$$\frac{n!}{(n-k)!} = k! \cdot \binom{n}{k}$$

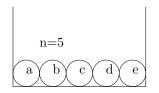
ba bc bd be ca cb cc cd ce da db ec ed ed

Zug: 5 Möglichkeiten
 Zug: 4 Möglichkeiten

 $5 \cdot 4 = 20 = \frac{5!}{(5-2)!}$ Möglichkeiten

Auswahl mit Wiederholung der Elemente

$$n^k$$


ab ad ae aa bb be ba cbcedb dcddde eb ecedee 1. Zug: 5 Möglichkeiten 2. Zug: 5 Möglichkeiten $5 \cdot 5 = 25 = 5^2$ Möglichkeiten

Interaktive Inhalte:

$$\frac{n!}{(n-k)!}$$
 n^k

5.2.4 Auswahl ohne Beachtung der Reihenfolge - Kombination

Ziehen von 2 Kugeln aus 5 verschiedenen Kugeln

Auswahl von k Elementen aus n unterschiedlichen Objekten ohne Berücksichtigung der Reihenfolge

Auswahl ohne Wiederholung der Elemente

$$\frac{n!}{k!(n-k)!} = \binom{n}{k} \qquad n \text{ "über } k$$

$$\frac{5\cdot 4}{2!} = 10 = \frac{5!}{2!(5-2)!}$$
 Möglichkeiten

Stochastik Kombinatorik

Auswahl mit Wiederholung der Elemente

$$\binom{n+k-1}{k}$$

aa ab ac ad ae bb bc bd be cc cd ce dd de ee
$$\begin{pmatrix} 5+2-1 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \frac{6\cdot 5}{1\cdot 2} = 15 \text{ M\"{o}glichkeiten}$$

<u>Interaktive Inhalte:</u>

$$\begin{array}{|c|c|c|c|}\hline \begin{pmatrix} n \\ k \end{pmatrix} & \hline \begin{pmatrix} n+k-1 \\ k \end{pmatrix}
\end{array}$$

Stochastik Wahrscheinlichkeit

5.3 Wahrscheinlichkeit

5.3.1 Zufallsexperiment

Ergebnis - Ereignis

- Ein Zufallsexperiment ist beliebig oft wiederholbar
- Die Elementarergebnisse (Stichproben, Ausgänge) $\omega_1, \omega_2, \omega_3, \dots$ des Zufallsexperiment sind nicht vorhersagbar
- \bullet Die Menge aller Ergebnisse heißt Ergebnisraum Ω
- $|\Omega|$ ist die Anzahl der Ergebnisse von Ω
- \bullet Ein Ergeignis Aist eine Teilmenge von Ω
- \bullet |A| ist die Anzahl der Elemente von A
- \bullet Die Menge aller Ergeinisse heißt Ereignisraum P

Werfen einer Münze

Ergebnis: $\omega_1 = Wappen(W)$ $\omega_2 = Zahl(Z)$

Ergebnismenge: $\Omega = \{W, Z\}$

Anzahl der Ergebnisse: $|\Omega| = 2$

Ereignis: $A = \{W\}$

Ereignis: $B = \{Z\}$

Werfen eines Würfels

Ergebnis: $\omega_1 = 1$ $\omega_2 = 2$ $\omega_3 = 3$

 $\omega_4 = 4$ $\omega_5 = 5$ $\omega_6 = 6$

Ergebnismenge: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Anzahl der Ergebnisse: $|\Omega| = 6$

Ereignis: $A = \{1, 3, 5, 6\}$

Anzahl der Elemente von |A|=4

Gegenereignis: $\overline{B} = \{2, 4\}$

Anzahl der Elemente von $|\overline{B}|=2$

Schnittmenge \cap von Ereignissen

 $\mathbb{A} = \{c; d; e\}$

 $\mathbb{B} = \{a; b; c; d\}$

 $\mathbb{A} \cap \mathbb{B} = \{c; d\}$

Alle Ergebnisse die in A und zugleich in B enthalten sind.

Werfen eines Würfels

Ergebnismenge: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Ereignis: $A = \{1, 3, 5, 6\}$

Ereignis: $B = \{2, 3, 4, 5\}$

 $\mathbb{A} \cap \mathbb{B} = \{3; 5\}$

Vereinigungsmenge \cup von Ereignissen

 $\mathbb{A} = \{c; d; e\}$

 $\mathbb{B} = \{a; b; c; d\}$

 $\mathbb{A} \cup \mathbb{B} = \{a; b; c; d; e\}$

Alle Ergebnisse die in A oder B enthalten sind.

Werfen eines Würfels

Ergebnismenge: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Ereignis: $A = \{1, 3, 5\}$

Ereignis: $B = \{2, 3, 4, 5\}$

 $\mathbb{A} \cup \mathbb{B} = \{1, 2, 3, 4, 5\}$

Differenz \ von Ereignissen

 $\mathbb{A} = \{c; d; e\}$

 $\mathbb{B} = \{a; b; c; d\}$

 $\mathbb{A} \setminus \mathbb{B} = \{e\}$

Alle Ergebnisse die in A, aber nicht in B enthalten sind.

Werfen eines Würfels

Ergebnismenge: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Ereignis: $A = \{1, 3, 5\}$

Ereignis: $B = \{2, 3, 4, 5\}$

 $\mathbb{A} \setminus \mathbb{B} == \{1\}$

Gegenereignis \overline{A}

 $\overline{A} = \Omega \setminus A$

Alle Ergebnisse die in Ω , aber nicht in A enthalten sind.

Werfen eines Würfels

Ergebnismenge: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Ereignis: $A = \{1, 3, 5, 6\}$ Gegenerreignis: $\overline{A} = \{2, 4\}$

Vereinbare - unvereinbare Ereignisse

 $\mathbb{A} \cap \mathbb{B} = \{\} \Leftrightarrow$ unvereinbare Ereignisse $\mathbb{A} \cap \mathbb{B} = \{a, b...\} \Leftrightarrow$ vereinbare Ereignisse

Werfen eines Würfels

Ergebnismenge: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Ereignis: $A=\{3,5,6\}$

Ereignis: $B = \{3, 4, 5\}$

Ereignis: $C = \{1, 2\}$

 $\mathbb{A} \cap \mathbb{B} = \{3; 5\}$ vereinbare Ereignisse $\mathbb{A} \cap \mathbb{C} = \{\}$ unvereinbare Ereignisse

Rechengesetze

• Kommutativgesetz

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

• Assoziativgesetz

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

ullet Distributivgesetz

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

• De Morgan

$$\overline{A} \cap \overline{B} = \overline{A \cup B}$$

$$\overline{A} \cup \overline{B} = \overline{A \cap B}$$

$$\overline{A} = A$$

• Neutrales Element

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

 \bullet Inverses Element

$$A \cap \overline{A} = \emptyset$$

 $A \cup \overline{A} = Grundmenge$

5.3.2 Relative Häufigkeit

Definition

$$h_n(A) = \frac{k}{2}$$

n - Anzahl der Wiederholungen eines Versuchs

A - Ereignis

k - Absolute Häufigkeit von A

h(A)- Relative Häufigkeit von A

Eigenschaften

•
$$0 \le h(A) \le 1$$

$$\bullet \ h(\emptyset) = 0$$

•
$$h(\Omega) = 1$$

$$\bullet \ h(A \cup B) = h(A) + h(B) - h(A \cap B)$$

•
$$h(A \cup B) = h(A) + h(B)$$
, wenn $A \cap B = \emptyset$

•
$$h(A) = 1 - h(\overline{A})$$

Interaktive Inhalte:

$$h_n(A) = \frac{k}{n}$$

5.3.3 Wahrscheinlichkeit

Laplace-Wahrscheinlichkeit

$$P(A) = \frac{k}{n}$$

Voraussetzung: Elementarergebnisse sind gleichwahrschein-

n - Anzahl der Wiederholungen eines Versuchs

A - Ereignis

k - Anzahl der günstigen Versuchsergebnisse für A

P(A)- Wahrscheinlichkeit von A

Werfen eines Würfels

Ergebnismenge: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Elementarergebnisse sind gleichwahrscheinlich:

$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$$

Anzahl aller möglichen Versuchsergebnisse: $n = |\Omega| = 6$

Ereignis: $A = \{1, 3, 5, 6\}$

Anzahl der günstigen Versuchsergebnisse: k = |A| = 4

Wahrscheinlichkeit von A

$$P(A) = \frac{4}{6}$$

Eigenschaften

•
$$0 \le P(A) \le 1$$

$$\bullet P(\emptyset) = 0$$

•
$$P(\Omega) = 1$$

$$\bullet \ P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

•
$$P(A \cup B) = P(A) + P(B)$$
, wenn $A \cap B = \emptyset$

$$\bullet$$
 $P(A) = 1 - P(\overline{A})$

•
$$P(\overline{A}) = 1 - P(A)$$

Werfen eines Würfels

Ergebnismenge: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Ereignis: $A = \{1, 3, 5\}$

Ereignis: $B = \{2, 3, 4, 5\}$

$$\mathbb{A} \cap \mathbb{B} = \{3, 5\}$$

$$\mathbb{P}(A) = 3$$

$$P(A) = \frac{3}{6}$$

$$P(A) = \frac{1}{6}$$

$$P(B) = \frac{4}{6}$$

$$P(A \cap B) = \frac{1}{2}$$

$$P(A \cup B) = \stackrel{\mathbf{0}}{P}(A) + P(B) - P(A \cap B)$$

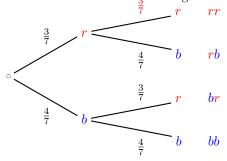
$$P(A \cap B) = \frac{2}{6}$$

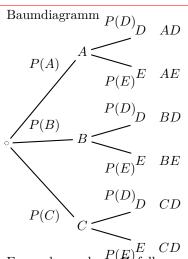
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = \frac{3}{6} + \frac{4}{6} - \frac{2}{6} = \frac{5}{6}$$

$$P(\overline{A}) = 1 - \frac{3}{6} = \frac{3}{6}$$

$$P(\overline{A}) = 1 - \frac{3}{6} = \frac{3}{6}$$


Interaktive Inhalte:


$$P(A) = \frac{k}{n}$$

Stochastik Wahrscheinlichkeit

5.3.4 Mehrstufige Zufallsexperimente

In einer Urne befinden sich drei rote und vier blaue Kugeln. Es werden nacheinander zwei Kugeln mit Zurücklegen gezogen.

Es werden mehrere Zufallsexperimente nacheinander ausgeführt. Jedes mögliche Elementarereignis wird zu einem Knoten (A,B,C..) im Baumdiagramm.

Zufalls experiment 1: $\Omega = \{A, B, C\}$

Zufallsexperiment 2: $\Omega = \{D, E\}$

Die Knoten werden durch Pfade verbunden und die Wahrscheinlichkeiten angetragen. (P(A),P(B)...)

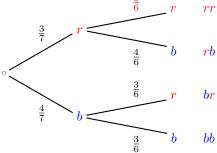
Die Wahrscheinlichkeiten an einem Knoten müssen sich zu 1 addieren.

1. Pfadregel (Produktregel)

Die Wahrscheinlichkeit eines Ergebnisses (AD,AE..)ist gleich dem Produkt der Wahrscheinlichkeiten entlang dieses Pfades.

$$P(AD) = P(A) \cdot P(D)$$
 $P(AE) = P(A) \cdot P(E)$

$$P(BD) = P(B) \cdot P(D)$$
 $P(BE) = P(B) \cdot P(E)$


$$P(CD) = P(C) \cdot P(D)$$
 $P(CE) = P(C) \cdot P(E)$

2. Pfadregel (Summenregel)

Die Wahrscheinlichkeit eines Ereignisses ist gleich der Summe der Wahrscheinlichkeiten ihrer Ergebnisse .

$$P(AD, CD) = P(AD) + P(CD)$$

In einer Urne befinden sich drei rote und vier blaue Kugeln. Es werden nacheinander zwei Kugeln ohne Zurücklegen gezogen.

Ziehen mit Zurücklegen

$$\Omega = \{rr; rb; br; bb\}$$

1. Pfadregel:

$$P(rr) = \frac{3}{7} \cdot \frac{3}{7} = \frac{9}{49}$$

$$P(rb) = \frac{3}{7} \cdot \frac{4}{7} = \frac{12}{49}$$

$$P(br) = \frac{4}{7} \cdot \frac{3}{7} = \frac{12}{49}$$

$$P(bb) = \frac{4}{7} \cdot \frac{4}{7} = \frac{16}{49}$$

Wahrscheinlichkeit für nur gleichfarbige Kugeln

$$E = \{rr; bb\}$$

2. Pfadregel:

$$P(E) = P(rr) + P(bb) = \frac{9}{49} + \frac{16}{49} = \frac{25}{49}$$

Ziehen ohne Zurücklegen

$$\Omega = \{rr; rb; br; bb\}$$

1. Pfadregel:

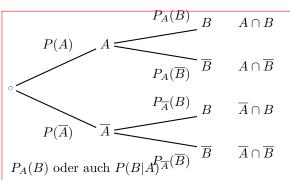
$$P(rr) = \frac{3}{7} \cdot \frac{2}{6} = \frac{6}{42}$$

$$P(rb) = \frac{3}{7} \cdot \frac{4}{6} = \frac{12}{42}$$

$$P(br) = \frac{4}{7} \cdot \frac{3}{6} = \frac{12}{42}$$

$$P(bb) = \frac{4}{7} \cdot \frac{3}{6} = \frac{12}{42}$$

 $P(00) = \frac{7}{7} \cdot \frac{6}{6} = \frac{42}{42}$ Wahrscheinlichkeit für genau 1 rote Kugel


$$E = \{rb; br\}$$

2. Pfadregel:

$$P(E) = P(rb) + P(br) = \frac{12}{42} + \frac{12}{42} = \frac{24}{42}$$

Stochastik Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit

Die Wahrscheinlichkeit von B unter der Bedingung A. Die Wahrscheinlichkeit von B, wenn A schon eingetreten ist.

1. Pfadregel

1. Pradregel
$$P(A \cap B) = P(A) \cdot P_{A}(B) \quad P_{A}(B) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \cap \overline{B}) = P(A) \cdot P_{A}(\overline{B}) \quad P_{A}(\overline{B}) = \frac{P(A \cap B)}{P(A)}$$

$$P(\overline{A} \cap B) = P(\overline{A}) \cdot P_{\overline{A}}(B) \quad P_{\overline{A}}(B) = \frac{P(\overline{A} \cap B)}{P(\overline{A} \cap B)}$$

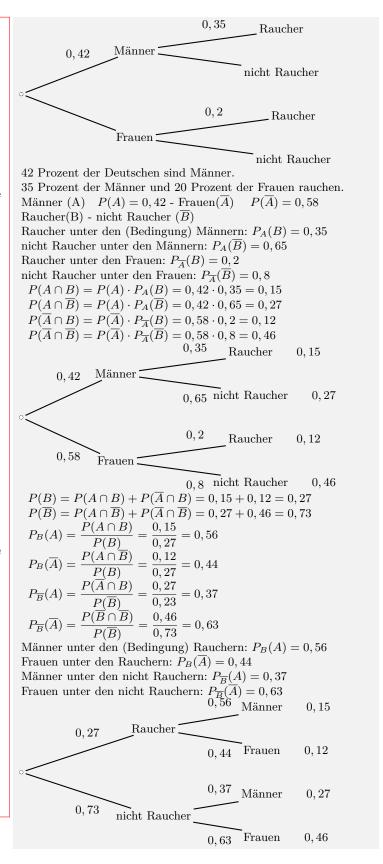
$$P(\overline{A} \cap \overline{B}) = P(\overline{A}) \cdot P_{\overline{A}}(\overline{B}) \quad P_{\overline{A}}(\overline{B}) = \frac{P(\overline{A} \cap B)}{P(\overline{A})}$$

$$P_{B}(A) \quad A \quad A \cap B$$

$$P(B) \quad B \quad P_{\overline{B}}(A) \quad A \quad A \cap \overline{B}$$

$$P(B) \quad B \quad \overline{A} \quad \overline{A} \cap \overline{B}$$

$$P(B) \quad B \quad \overline{A} \quad \overline{A} \cap \overline{B}$$


$$P(B) \quad \overline{B} \quad \overline{A} \quad \overline{A} \cap \overline{B}$$

$$P(B) \quad \overline{B} \quad \overline{A} \quad \overline{A} \cap \overline{B}$$

Die Wahrscheinlichkeit von A unter der Bedingung B. Die Wahrscheinlichkeit von A, wenn B schon eingetreten ist.

1. Pfadregel

Problem 1. Fracting of
$$P(A \cap B) = P(B) \cdot P_B(A)$$
 $P_B(A) = \frac{P(A \cap B)}{P(B)}$ $P(\overline{A} \cap B) = P(B) \cdot P_B(\overline{A})$ $P_B(\overline{A}) = \frac{P(\overline{A} \cap B)}{P(B)}$ $P(A \cap \overline{B}) = P(\overline{B}) \cdot P_{\overline{B}}(A)$ $P_{\overline{B}}(A) = \frac{P(A \cap B)}{P(B)}$ $P(\overline{A} \cap \overline{B}) = P(\overline{B}) \cdot P_{\overline{B}}(\overline{A})$ $P_{\overline{B}}(A) = \frac{P(A \cap \overline{B})}{P(\overline{B})}$ $P(B) = P(A \cap B) + P(\overline{A} \cap B)$ $P(\overline{B}) = P(A \cap B) + P(\overline{A} \cap \overline{B})$ $P(A) = P(A \cap B) + P(A \cap \overline{B})$ $P(A) = P(A \cap B) + P(A \cap \overline{B})$ $P(\overline{A}) = P(\overline{A} \cap B) + P(\overline{A} \cap \overline{B})$

Stochastik Wahrscheinlichkeit

5.3.6 Vierfeldertafel

Relativer Häufigkeiten

Zusammenhang zwischen zwei Merkmalen.

1. Merkmal hat die Ausprägung A und \overline{A}

2. Merkmal hat die Ausprägung B und \overline{B}

	A	\overline{A}	Σ
В	$h(A \cap B)$	$h(\overline{A} \cap B)$	h(B) $a+b$
\overline{B}	$h(A \cap \overline{B})$	$h(\overline{A} \cap \overline{B})$	$h(\overline{B})$ $c+d$
Σ	h(A) $a+c$	$h(\overline{A})$ b+d	$\begin{vmatrix} 1 \\ a+b+c+d \end{vmatrix}$

Relative Häufigkeit der Ausprägung

$$h(A), h(B), h(\overline{A}), h(\overline{B})$$

$$h(B) + h(\overline{B}) = 1$$
 $h(A) + h(\overline{A}) = 1$

Relative Häufigkeit von der Schnittmenge

$$h(A \cap B), h(\overline{A} \cap B), h(A \cap \overline{B}, h(\overline{A} \cap \overline{B}))$$

$$h(B) = h(A \cap B) + h(\overline{A} \cap B)$$

$$h(\overline{B}) = h(A \cap \overline{B}) + h(\overline{A} \cap \overline{B})$$

$$h(A) = h(A \cap B) + h(A \cap \overline{B})$$

$$h(\overline{A}) = h(\overline{A} \cap B) + h(\overline{A} \cap \overline{B})$$

Relative Häufigkeiten von der Vereinigungsmenge

$$h(A \cup B), h(\overline{A} \cup B), h(A \cup \overline{B}h(\overline{A} \cup \overline{B}))$$

$$h(A \cup B) = h(A \cap B) + h(A \cap \overline{B}) + h(\overline{A} \cap B)$$

$$h(\overline{A} \cup B) = h(A \cap B) + h(\overline{A} \cap B) + h(\overline{A} \cap \overline{B})$$

$$h(A \cup \overline{B}) = h(A \cap B) + h(A \cap \overline{B}) + h(\overline{A} \cap \overline{B})$$

$$h(\overline{A} \cap \overline{B}) = h(A \cap \overline{B} + h(\overline{A} \cap B) + h(\overline{A} \cap \overline{B})$$

$$h(A \cup B) = 1 - h(\overline{A} \cap \overline{B})$$

$$h(\overline{A} \cup B) = 1 - h(A \cap \overline{B})$$

$$h(A \cup \overline{B}) = 1 - h(A \cap \overline{B})$$

$$h(\overline{A} \cap \overline{B}) = 1 - h(A \cap B)$$

Relative Häufigkeit unter einer Bedingung

Relative Haungkeit of
$$h_A(B) = \frac{h(A \cap B)}{h(A)}$$

$$h_A(\overline{B}) = \frac{h(A \cap \overline{B})}{h/A)}$$

$$h_{\overline{A}}(B) = \frac{h(\overline{A} \cap B)}{h(\overline{A})}$$

$$h_{\overline{A}}(\overline{B}) = \frac{h(\overline{B} \cap \overline{B})}{h(\overline{A})}$$

In einer Schulklasse sind 32 Schüler, darunter 18 Mädchen.

6 Mädchen und 8 Jungen sind krank.

1. Merkmal: Mädchen (A) - Jungen(\overline{A})

2.Merkmal: Krank(B) - Gesund (\overline{B})

Mädchen: A = 18

Jungen: $\overline{A} = 32 - 18 = 14$

kranke Mädchen: $A \cap B = 6$

kranke Jungen: $\overline{A} \cap B = 8$

Kranke: B = 6 + 8 = 14

gesunde Mädchen: $A \cap \overline{B} = 18 - 6 = 12$

gesunde Jungen: $\overline{A} \cap \overline{B} = 14 - 8 = 6$

Vierfeldertafel mit absoluten Häufigkeiten

		_	
	A Mädchen	\overline{A} Jungen	Σ
	Madenen	Jungen	
B	$A \cap B$	$\overline{A} \cap B$	B
Krank	6	8	14
\overline{B}	$A \cap \overline{B}$	$\overline{A} \cap \overline{B}$	\overline{B}
Gesund	12	6	18
\sum	A	\overline{A}	Insgesamt
	18	14	32

Vierfeldertafel mit relativen Häufigkeiten

	A Mädchen	\overline{A} Jungen	Σ
BKrank	$h(A \cap B)$ $\frac{6}{32}$	$h(\overline{A} \cap B)$	$h(B)$ $\frac{14}{32}$
\overline{B} Gesund	$h(A \cap \overline{B})$	$h(\overline{A} \cap \overline{B})$	$h(\overline{B})$ $\frac{18}{32}$
Σ	$h(A)$ $rac{18}{32}$	$h(\overline{A}) = \frac{14}{32}$	$\begin{array}{c c} 1 \\ \frac{32}{32} \end{array}$

Relative Häufigkeit von

Mädchen $h(A) = \frac{18}{32}$ Jungen $h(\overline{A}) = \frac{14}{32}$

Krank $h(B) = \frac{14}{32}$ Gesund $h(\overline{B}) = \frac{18}{32}$

Anzahl der gesunden Mädchen: 12

 $h(A \cap \overline{B}) = \frac{12}{32} = 37,5\%$

37,5% der gesamten Schüler sind gesunde Mädchen.

Wieviel Prozent der Mädchen sind gesund?

$$h_A(\overline{B}) = \frac{h(A \cap \overline{B})}{h(A)} = \frac{\frac{12}{32}}{\frac{18}{32}} = \frac{12}{18}$$

Stochastik Wahrscheinlichkeit

Wahrscheinlichkeiten

Zusammenhang zwischen zwei Merkmalen.

- 1. Merkmal hat die Ausprägung A und \overline{A} .
- 2. Merkmal hat die Ausprägung B und \overline{B} .

	A	\overline{A}	Σ
В	$P(A \cap B)$	$P(\overline{A} \cap B)$	P(B) $a+b$
\overline{B}	$P(A \cap \overline{B})$ c	$P(\overline{A} \cap \overline{B})$	$P(\overline{B})$ $c+d$
Σ	P(A) $a+c$	$P(\overline{A})$ $b+d$	$ \begin{array}{ c c c } \hline 1 \\ a+b+c+d \end{array} $

Wahrscheinlichkeit der Ausprägung

$$P(A), P(B), P(\overline{A}), P(\overline{B})$$

$$P(B) + P(\overline{B}) = 1$$

$$P(A) + P(\overline{A}) = 1$$

Wahrscheinlichkeit von der Schnittmenge

$$P(A \cap B), P(\overline{A} \cap B), P(A \cap \overline{B}, P(\overline{A} \cap \overline{B})).$$

$$P(B) = P(A \cap B) + P(\overline{A} \cap B)$$

$$P(\overline{B}) = P(A \cap \overline{B}) + P(\overline{A} \cap \overline{B})$$

$$P(A) = P(A \cap B) + P(A \cap \overline{B})$$

$$P(\overline{A}) = P(\overline{A} \cap B) + P(\overline{A} \cap \overline{B})$$

Berechnungen mit den bedingten Wahrscheinlichkeiten

$$P(A \cap B) = P_A(B) \cdot P(A)$$

$$P(A \cap \overline{B}) = P_A(\overline{B}) \cdot P(A)$$

$$P(\overline{A} \cap B) = P_{\overline{A}}(B) \cdot P(\overline{A})$$

$$P(\overline{B} \cap \overline{B}) = P_{\overline{A}}(\overline{B}) \cdot P(\overline{A})$$

Wahrscheinlichkeit von der Vereinigungsmenge

$$P(A \cup B), P(\overline{A} \cup B), P(A \cup \overline{B}P(\overline{A} \cup \overline{B}))$$

$$P(A \cup B) = P(A \cap B) + P(A \cap \overline{B}) + P(\overline{A} \cap B)$$

$$P(\overline{A} \cup B) = P(A \cap B) + P(\overline{A} \cap B) + P(\overline{A} \cap \overline{B})$$

$$P(A \cup \overline{B}) = P(A \cap B) + P(A \cap \overline{B}) + P(\overline{A} \cap \overline{B})$$

$$P(\overline{A} \cap \overline{B}) = P(A \cap \overline{B} + P(\overline{A} \cap B) + P(\overline{A} \cap \overline{B})$$

$$P(A \cup B) = 1 - P(\overline{A} \cap \overline{B})$$

$$P(\overline{A} \cup B) = 1 - P(A \cap \overline{B})$$

$$P(A \cup \overline{B}) = 1 - P(A \cap \overline{B})$$

$$P(\overline{A} \cap \overline{B}) = 1 - P(A \cap B)$$

42 Prozent der Deutschen sind Männer. 35 Prozent der Männer und 20 Prozent der Frauen rauchen.

1.Merkmal: Männer (A) Frauen (\overline{A})

Mainler (A) Frauen(A)

2.Merkmal: Raucher (B) - nicht Raucher (\overline{B})

$$P(A) = 0,42$$
 $P(\overline{A}) = 1 - 0,42 = 0,58$

Raucher unter den (Bedingung) Männern: $P_A(B)=0,35$

 $P(A \cap B) = P_A(B) \cdot P(A) = 0,35 \cdot 0,42 = 0,15$

Raucher unter den (Bedingung) Frauen: $P_{\overline{A}}(B) = 0, 2$

$$P(\overline{A} \cap B) = P_{\overline{A}}(B) \cdot P(\overline{A}) = 0, 2 \cdot 0, 58 = 0, 12)$$

$$P(\overline{A} \cap \overline{B}) = 0,42 - 0,15 = 0,27$$

$$P(\overline{B}) = 0,58 - 0,12 = 0,46$$

$$P(B) = 0,15+0,12=0,27$$

$$P(\overline{B}) = 1 - 0,27 = 0,73$$

-0,10			
A Männer	\overline{A} Frauen	Σ	
$P(A \cap B) \\ 0, 15$	$P(\overline{A} \cap B) \\ 0, 12$	P(B) 0, 27	
$P(A \cap \overline{B})$ $0, 27$	$P(\overline{A} \cap \overline{B})$ $0,46$	$P(\overline{B}) \\ 0,73$	
P(A) 0.42	$P(\overline{A})$ 0.58	1	
	A Männer $P(A \cap B)$ $0, 15$ $P(A \cap \overline{B})$ $0, 27$ $P(A)$	$ \begin{array}{c c} A & \overline{A} \\ \text{Männer} & \text{Frauen} \\ \hline P(A \cap B) & P(\overline{A} \cap B) \\ 0, 15 & 0, 12 \\ \hline P(A \cap \overline{B}) & P(\overline{A} \cap \overline{B}) \\ 0, 27 & 0, 46 \\ \hline \end{array} $	$ \begin{array}{c cccc} A & \overline{A} & \sum \\ \text{Männer} & \text{Frauen} & \\ \hline P(A \cap B) & P(\overline{A} \cap B) & P(B) \\ 0, 15 & 0, 12 & 0, 27 \\ \hline P(A \cap \overline{B}) & P(\overline{A} \cap \overline{B}) & P(\overline{B}) \\ 0, 27 & 0, 46 & 0, 73 \\ \hline \end{array} $

Stochastik Wahrscheinlichkeit

Stochastische Unabhängigkeit

$$P(A \cap B) = P(A) \cdot P(B) \Leftrightarrow A,B$$
 unabhängig $P(A \cap B) \neq P(A) \cdot P(B) \Leftrightarrow A,B$ abhängig

 $P(A \cap B) = 0,15$ P(A) = 0,42P(B) = 0.27 $P(A \cap B) \neq P(A) \cdot P(B)$ $0,15 \neq 0,42 \cdot 0,27 \Leftrightarrow A,B$ abhängig

5.3.7Binomialverteilung

In einer Urne befinden sich vier rote und sechs blaue Kugeln. Es werden nacheinander drei Kugeln mit Zurücklegen gezogen. Zwei Ausgänge des Zufallsexperiments: rote oder blaue Kugeln

Wahrscheinlichkeit für eine rote Kugel: $p=\frac{4}{10}=\frac{2}{5}$ Wahrscheinlichkeit für eine blaue Kugel: $q=1-p=\frac{6}{10}=\frac{3}{5}$

Anzahl der Versuche: n=3

Ziehen mit Zurücklegen: Wahrscheinlickeiten ändern sich nicht

Definition

$$P(X = k) = B(n, p, k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$$

Voraussetzung

- Zufallsexperiment mit nur zwei möglichen Ausgängen (Bernoulli-Experiment)
- p Wahrscheinlichkeit des Ereignisses A
- Stichprobe mit Zurücklegen Wahrscheinlichkeit p ändert sich nicht
- n Anzahl der Wiederholungen des Versuchs (Bernoullikette der Länge n)
- Das Ereignis A tritt genau k-mal ein.

Wie groß ist die Wahrscheinlichkeit, genau 2 rote Kugeln zu ziehen? Genau 2 rote Kugeln: k=2

$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$

$$P(X = 2) = B(10, \frac{2}{5}, 2)$$

$$P(X = 2) = \binom{10}{2} \cdot (\frac{2}{5})^2 \cdot (1 - \frac{2}{5})^{10 - 2}$$

$$P(X = 2) = 0, 121$$

Verteilungsfunktion

$$F(k) = P(0 \le X \le k) = \sum_{i=0}^{k} B(n; p; i)$$

Binomialverteilung
$$n=10$$
 $p=\frac{2}{5}$

$$k \mid B(10,\frac{2}{5},k) \mid F(k) \\ 0 \mid 0,006047 \mid 0,006047 \\ 1 \mid 0,040311 \mid 0,046357 \\ 2 \mid 0,120932 \mid 0,167290 \\ 3 \mid 0,214991 \mid 0,382281 \\ 4 \mid 0,250823 \mid 0,633103 \\ 5 \mid 0,200658 \mid 0,833761 \\ 6 \mid 0,111477 \mid 0,945238 \\ 7 \mid 0,042467 \mid 0,987705 \\ 8 \mid 0,010617 \mid 0,998322 \\ 9 \mid 0,001573 \mid 0,99895 \\ 10 \mid 0,000105 \mid 1,000000$$

Stochastik Wahrscheinlichkeit

Bereiche der Binomialverteilung

höchstens k-mal
$$P(x \leq k) = \sum_{i=0}^{k} B(n; p; i) = F(k)$$
 weniger als k-mal
$$P(x < k) = \sum_{i=0}^{k-1} B(n; p; i) = F(k-1)$$
 mindestens k-mal
$$P(x \geq k) = \sum_{i=k}^{n} B(n; p; i) = 1 - F(k-1)$$
 mehr als k-mal
$$P(x > k) = \sum_{i=k+1}^{n} B(n; p; i) = 1 - F(k)$$
 mindestens 1-mal
$$P(x \geq 1) = \sum_{i=1}^{n} B(n; p; i) = 1 - F(0) = 1 - B(n; p; 0) = 1 - \binom{n}{0} \cdot p^0 \cdot (1-p)^n = 1 - (1-p)^n$$

```
Mit welcher Wahrscheinlichkeit werden .. genau 2 rote Kugeln P(x=2)=0,120932 höchstens 2 rote Kugeln P(x\leq 2)=F(2)=\sum_{i=0}^2B(10;\frac{2}{5};i)=B(10,\frac{2}{5},0)+B(10,\frac{2}{5},1)+B(10,\frac{2}{5},2)=0,167290 weniger als 2 rote Kugeln P(x<2)=F(1)=\sum_{i=0}^1B(10;\frac{2}{5};i)=B(10,\frac{2}{5},0)+B(10,\frac{2}{5},1)=0,046357 mehr als 2 rote Kugeln P(x>2)==1-F(2)=0,832710 mindestens 2 rote Kugeln P(x\geq 2)=1-F(1)=0,953643 gezogen
```

Stochastik Wahrscheinlichkeit

3-mindestens-Aufgabe

 P_{min} ist die Mindestwahrscheinlichkeit für mindesten einen Treffer $(x \geq 1)$ und der Trefferwahrscheinlichkeit p bei mindestens n Versuchen.

$$P_p^n(x \ge 1) \ge P_{min}$$

Gesucht: n - Mindestanzahl der Versuche

$$\begin{split} & P_p^n(x \ge 1) \ge P_{min} \\ & 1 - P_p^n(0) \ge P_{min} \\ & 1 - \binom{n}{0} \cdot p^0 \cdot (1 - p)^n \ge P_{min} \\ & 1 - (1 - p)^n \ge P_{min} \quad / - P_{min} / + (1 - p)^n \\ & 1 - P_{min} \ge (1 - p)^n \quad / ln \\ & \ln(1 - P_{min}) \ge \ln((1 - p)^n) \\ & \ln(1 - P_{min}) \ge n \ln((1 - p) \quad / : \ln(1 - p) \\ & \frac{\ln(1 - P_{min})}{\ln(1 - p)} \le n \\ & n \ge \frac{\ln(1 - P_{min})}{\ln(1 - p)} \end{split}$$

Gesucht: p - Wahrscheinlichkeit eines Treffers

$$\begin{split} &P_p^n(x \geq 1) \geq P_{min} \\ &1 - P_p^n(0) \geq P_{min} \\ &1 - \binom{n}{0} \cdot p^0 \cdot (1-p)^n \geq P_{min} \\ &1 - \binom{n}{0} \cdot p^0 \cdot (1-p)^n \geq P_{min} \\ &1 - (1-p)^n \geq P_{min} \qquad / - P_{min} / + (1-p)^n \\ &1 - P_{min} \geq (1-p)^n \qquad / \frac{1}{n} \\ &(1 - P_{min})^{\frac{1}{n}} \geq 1 - p \qquad / + p / - (1 - P_{min})^{\frac{1}{n}} \\ &p \geq 1 - (1 - P_{min})^{\frac{1}{n}} \end{split}$$

Die Wahrscheinlichkeit für einen Gewinn beim Losen beträgt 20%. Wieviele Lose muss man mindestens kaufen, um mit einer Wahrscheinlichkeit von mindestens 50% mindestens einmal zu gewinnen?

$$\begin{array}{ll} x \geq 1 & p = 0, 2 & P_{min} \geq 0, 5 \\ P_{0,2}^{n}(x \geq 1) \geq 0, 5 & \\ 1 - P_{0,2}^{n}(0) \geq 0, 5 & \\ 1 - \binom{n}{0} \cdot 0, 2^{0} \cdot (1 - 0, 2)^{n} \geq 0, 5 \\ 1 - 0, 8^{n} \geq 0, 5 & / -0, 5/ + 0, 8^{n} \\ 1 - 0, 5 \geq 0, 8^{n} & /ln \\ \ln(0, 5) \geq \ln(0, 8^{n}) & \\ \ln(0, 5) \geq n \ln(0, 8) & / : ln(0, 8) \\ \frac{\ln(0, 5)}{\ln(0, 8)} \leq n & \\ n \geq \frac{\ln(0, 5)}{\ln(0, 8)} & \\ n \geq 3, 1 & \end{array}$$

Beim zehnmaligen Losen ist die Wahrscheinlichkeit mindestens einmal zu gewinnen mindestens 40%. Wie groß muss die Wahrscheinlichkeit für einen Gewinn beim Losen sein?

$$x \ge 1 \qquad n = 10 \qquad P_{min} \ge 0, 4$$

$$P_p^{10}(x \ge 1) \ge 0, 4$$

$$1 - P_p^{10}(0) \ge 0, 4$$

$$1 - \binom{10}{0} \cdot p^0 \cdot (1 - p)^{10} \ge 0, 4$$

$$1 - (1 - p)^{10} \ge 0, 4 \qquad / -0, 4/ + (1 - p)^{10}$$

$$1 - 0, 4 \ge (1 - p)^{10} \qquad / \frac{1}{10}$$

$$(0, 6)^{\frac{1}{10}} \ge 1 - p \qquad / + p/ - (0, 6)^{\frac{1}{10}}$$

$$p \ge 1 - (0, 6)^{\frac{1}{10}}$$

$$p \ge 0, 05$$

Stochastik Wahrscheinlichkeit

Wartezeitaufgaben

Erster Treffer im n-ten Versuch

$$P(E) = (1 - p)^{n-1} \cdot p$$

Erster Treffer frühestens im n-ten Versuch

$$P(E) = (1 - p)^{n-1}$$

Erster Treffer spätestens im n-ten Versuch

$$P(E) = 1 - (1 - p)^n$$

k-ter Treffer im n-ten Versuch
$$P(E) = \binom{n-1}{k-1} \cdot p^{k-1} \cdot (1-p)^{n-k} \cdot p$$

k-ter Treffer frühestens im n-ten Versuch

$$P(E) = P(x \le k - 1) = \sum_{i=0}^{\kappa - 1} B(n - 1; p; i)$$

k-ter Treffer spätestens im n-ten Versuch

$$P(E) = 1 - P(x \le k - 1) = 1 - \sum_{i=0}^{k-1} B(n; p; i)$$

Zufallsexperiment Würfeln.

Wie groß ist die Wahrscheinlichkeit, dass die 6

- beim 9. Wurf zum ersten Mal auftritt? $P(E) = (1 - \frac{1}{6})^{9-1} \cdot \frac{1}{6}$

$$P(E) = (1 - \frac{1}{6})^{9-1} \cdot \frac{1}{6}$$

- frühestens beim 9. Wurf zum ersten Mal auftritt? $P(E) = (1 - \frac{1}{6})^{9-1}$

$$P(E) = (1 - \frac{1}{6})^{9-}$$

- spätestens beim 9. Wurf zum ersten Mal auftritt?

$$P(E) = 1 - (1 - \frac{1}{6})^9$$

- beim 9. Wurf zum dritten Mal auftritt?
$$P(E) = \begin{pmatrix} 9-1 \\ 3-1 \end{pmatrix} \cdot \frac{1}{6}^{3-1} \cdot (1-p)^{9-3} \cdot \frac{1}{6}$$

- frühestens beim 9. Wurf zum dritten Mal auftritt?

$$P(E) = \sum_{i=0}^{3-1} B(9-1; \frac{1}{6}; i)$$

- spätestens beim 9. Wurf zum dritten Mal auftritt?

$$P(E) = 1 - \sum_{i=0}^{3-1} B(9; \frac{1}{6}; i)$$

Interaktive Inhalte:

$$P(X = k)$$

$$P(k1 \le X \le k2)$$

$$P(X>,\geq,\leq....k)$$

Hypergeometrische Verteilung

In einer Urne befinden sich vier rote und sechs blaue Kugeln. Es werden nacheinander drei Kugeln ohne Zurücklegen gezogen.

Anzahl der Elemente: N=10

Anzahl der Züge: n=3

Anzahl der roten Kugeln: K=4

Ziehen ohne Zurücklegen

Definition

$$P(X = k) = \frac{\binom{K}{k} \cdot \binom{N - K}{n - k}}{\binom{N}{n}}$$

- Zufallsexperiment mit nur zwei möglichen Ausgängen
- Stichprobe ohne Zurücklegen Wahrscheinlichkeit pändert sich
- N Anzahl aller Elemente
- n Anzahl der Wiederholungen des Versuchs
- K Anzahl von A unter den N Elementen
- Das Ereignis A tritt genau k-mal ein

Wie groß ist die Wahrscheinlichkeit, genau 2 rote Kugeln zu ziehen? Anzahl der gezogenen roten Kugeln: k=2

$$P(X = k) = \frac{\binom{K}{k} \cdot \binom{N-K}{n-k}}{\binom{N}{n-k}}$$
$$P(X = 2) = \frac{\binom{4}{2} \cdot \binom{10-4}{3-2}}{\binom{10}{3}}$$
$$P(X = 2) = \frac{3}{10}$$

$$P(X = 2) = \frac{\binom{2}{3} \cdot \binom{3-2}{3}}{\binom{10}{3}}$$
$$P(X = 2) = \frac{3}{3}$$

$$P(X=2) = \frac{3}{10}$$

Interaktive Inhalte:

$$P(X = k)$$

Stochastik Wahrscheinlichkeit

Erwartungswert - Varianz - Standardabweichung

Wahrscheinlichkeitsverteilung

Zufallsgröße X mit den Werten $x_1, x_2, x_3...$

Wahrscheinlichkeitsverteilung

Erwartungswert:

$$E(x) = \mu = x_1 \cdot p_1 + x_2 \cdot p_2 + x_3 \cdot p_3 \dots$$

$$E(x) = \mu = \sum_{i=1}^{n} x_i \cdot P(x_i)$$

Varianz:

$$Var(x) = (x_1 - \mu)^2 \cdot p_1 + (x_2 - \mu)^2 \cdot p_2 + (x_3 - \mu)^2 \cdot p_3 + \dots$$

$$Var(x) = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(x_i)$$

Standardabweichung:

$$\sigma = \sqrt{Var(x)}$$

$$E(x) = -1 \cdot \frac{2}{25} + 0 \cdot \frac{3}{25} + 1 \cdot \frac{7}{50} + 2 \cdot \frac{6}{25} + 3 \cdot \frac{11}{50} + 4 \cdot \frac{1}{5}$$

 $Var(x) = (-1-2)^2 \cdot \frac{2}{25} + (0-2)^2 \cdot \frac{3}{25} + (1-2)^2 \cdot \frac{7}{50} + (2-2)^2 \cdot \frac{6}{25} + (3-2)^2 \cdot \frac{11}{50} + (4-2)^2 \cdot \frac{1}{5} = 2\frac{9}{25}$ Standardoweichung:

$$\sigma=\sqrt{2\tfrac{9}{25}}=1,54$$

Binomialverteilung

Binomial verteilung B(n;p)

X	0		2	3	
P(X)	B(n; p; 0)	B(n; p; 1)	B(n; p; 2)	B(n; p; 3)	

Erwartungswert:

$$E(x) = \mu = n \cdot p$$

Varianz:

$$Var(x) = n \cdot p \cdot (1 - p)$$

Standardabweichung:

$$\sigma = \sqrt{Var(x)}$$

Binomialverteilung

$$n = 50$$
 $p = 0, 25$

Erwartungswert:

$$E(x) = \mu = n \cdot p$$

$$E(x) = \mu = 50 \cdot \frac{1}{4}$$

 $E(x) = 12\frac{1}{2}$

$$E(x) = 12$$

$$Var(x) = n \cdot p \cdot (1 - p)$$

$$Var(x) = 50 \cdot \frac{1}{4} \cdot (1 - \frac{1}{4})$$

 $Var(x) = 9\frac{3}{8}$

$$Var(x) = 9\frac{3}{8}$$

Standardabweichung:

$$\sigma = \sqrt{9\frac{3}{8}} = 3,06$$

Interaktive Inhalte:

Statistik

Binomial

Stochastik Testen von Hypothesen

5.4 Testen von Hypothesen

5.4.1 Einseitiger Signifikanztest

Ist ein Würfel gezinkt?

Die Wahrscheinlichkeit eine Sechs zu würfeln ist bei einem nicht gezinkten Würfel: $p=\frac{1}{6}$ (Nullhypothese). Bei einem gezinkten Würfel ist die Wahrscheinlichkeit für eine Sechs: $p>\frac{1}{6}$ (Gegenhypothese und Rechtsseitiger Signifikanztest). Der zu testende Würfel wird 100 mal geworfen (Stichprobenlänge). Man hält den Würfel für nicht gezinkt, wenn die Anzahl der gewürfelten Sechser höchstens 20 ist (Annahmebereich der Nullhypothese). Man hält den Würfel für gezinkt, wenn die Anzahl der gewürfelten Sechser mindestens 21 ist (Ablehungsbereich der Nullhypothese). Zwei Fehler sind bei der Entscheidung möglich:

- 1. Der Würfel ist nicht gezinkt. Mit viel Glück kann man auch mit einem nicht gezinkten Würfel mehr als 20 mal die Sechs würfeln. Man hält den Würfel für gezinkt, obwohl er es nicht ist. (Fehler 1. Art)
- 2. Der Würfel ist gezinkt. Mit viel Pech kann man auch mit einem gezinkten Würfel weniger als 21 mal die Sechs würfeln. Man hält den Würfel für nicht gezinkt, obwohl er es ist. (Fehler 2. Art).

Ziel ist es die Wahrscheinlichkeit für die Fehler zu berechnen (Irrtumswahrscheinlichkeit).

Definitionen

- Testgröße: Binomial verteilte Zufallsgröße X
- \bullet Nullhypothese H_0 : Vermutete Wahrscheinlichkeit für die Zufallsgröße X
- \bullet Gegenhypothese H_1 : Alternative Wahrscheinlichkeit
- Stichprobenlänge n : Anzahl der durchgeführten Versuche
- Entscheidungsregel: Annahme- und Ablehnungsbereich für die Nullhypothese
- Fehler 1. Art (α -Fehler): H_0 wird irrtümlich abgelehnt. Entscheidung gegen H_0 , aber H_0 ist richtig.
- Fehler 2. Art (β -Fehler): H_0 wird irrtümlich angenommen. Entscheidung für H_0 , aber H_0 ist nicht richtig.
- \bullet Irrtumswahrscheinlichkeit: Wahrscheinlichkeit für Fehler 1 Art. Berechnung durch: $\alpha=P_{p_0}^n($ Ablehnungsbereich von $H_0)$
- Signifikanzniveau: maximale Irrtumswahrscheinlichkeit

Testgröße: Anzahl der Sechsen beim Würfeln

Stichprobenlänge n = 100Nullhypothese $H_0: p \leq \frac{1}{6}$ Gegenhypothese $H_1: p > \frac{1}{6}$ Annahmebereich: $\overline{A} = \{0..20\}$ Annahmebereich: $\overline{A} = \{21..100\}$

Rechtsseitiger Signifikanztest

	Annahmebereich	Ablehnungsbereich
	$A = \{0k\}$	$\overline{A} = \{k+1n\}$
$H_0: p \le p_0$	richtig	Fehler 1. Art
$H_1: p > p_0$	Fehler 2. Art	richtig

Aufgabentyp 1

Gegeben: n, H_0 , Annahme-und Ablehnungsbereich

Gesucht:Irrtumswahrscheinlichkeit (Fehler 1. Art)

$$\alpha = P_{p_0}^n(\overline{A})$$

$$\alpha = P_{n_0}^n(X \ge k+1) = \sum_{i=k+1}^n B(n; p_0; i)$$

$$\alpha = P_{p_0}^n(X \ge k + 1) = \sum_{i=k+1}^n B(n; p_0; i)$$

$$\alpha = 1 - P_{p_0}^n(X \le k) = 1 - \sum_{i=0}^k B(n; p_0; i) = 1 - F(k)$$

Aufgabentyp 2

Gegeben: $n, H_0, Signifikanzniveau$

Gesucht: Annahme-und Ablehnungsbereich

$$P_{p_0}^n(\overline{A}) \le \alpha$$

$$P_{p_0}^n(X \ge k+1) \le \alpha$$

$$1 - P_{p_0}^n(X \le k) \le \alpha$$

$$P_{p_0}^n(X \le k) \ge 1 - \alpha$$

Aufgabentyp 1

Gegeben:

$$n = 100, H_0: p \le \frac{1}{6}$$

$$A\{0..20\}, \overline{A} = \{21..100\}$$

Gesucht:Irrtumswahrscheinlichkeit für den Fehler 1. Art

$$\alpha = P_1^{100}(X \ge 21) = \sum_{i=21}^{100} B(100; \frac{1}{6}; i)$$

Gesticit: It turns wait scheme the first turn den Femer 1. At
$$\alpha = P_{\frac{1}{6}}^{100}(X \ge 21) = \sum_{i=21}^{100} B(100; \frac{1}{6}; i)$$

$$\alpha = 1 - P_{\frac{1}{6}}^{100}(X \le 20) = 1 - \sum_{i=0}^{20} B(100; \frac{1}{6}; i) = 1 - F(20)$$

Aus Tafelwerk:
$$\sum_{i=0}^{6} B(100; \frac{1}{6}; i) = F(20) = 0,84811$$

1 - 0.84811 = 0.15189

Irrtumswahrscheinlichkeit = 15,19%

Aufgabentyp 2

Gegeben:

$$n = 100; H_0: p = \frac{1}{6}$$

Signifikanzniveau $\alpha = 5\%$

Gesucht: Entscheidungsregel

$$A\{0..k\}; \overline{A}\{k+1..100\}$$

$$P_{\underline{1}}^{100}(X \ge k+1) \le 0.05$$

$$\sum_{i=k+1}^{\overline{6}} B(100; \frac{1}{6}; i) \le 0,05$$

$$1 - P_{\frac{1}{6}}^{100}(X \le k) \le 0,05$$

$$1 - P_{\frac{1}{6}}^{100}(X \le k) \le 0.05$$

$$P_{\frac{1}{8}00}^{100}(X \le k) \ge 1 - 0.05$$

$$P_{\frac{1}{6}}^{100}(X \le k) \ge 0.95$$

Aus Tafelwerk: k = 23

Entscheidungsregel

$A\{0..23\}; \overline{A}\{24..100\}$

Linksseitiger Signifikanztest

		Ablehnungsbereich	Annahmebereich
		$\overline{A} = \{0k\}$	$A = \{k+1n\}$
H_0	$p \ge p_0$	Fehler 1. Art	richtig
H	$p < p_0$	richtig	Fehler 2. Art

Aufgabentyp 1

Gegeben: n, H_0 , Annahme-und Ablehnungsbereich

Gesucht:Irrtumswahrscheinlichkeit (Fehler 1. Art)

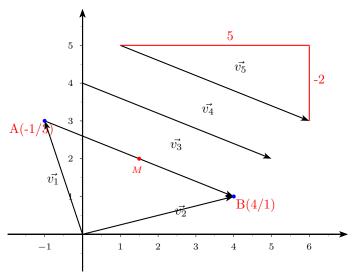
$$\alpha = P_{p_0}^n(\overline{A})$$

$$\alpha = P_{p_0}^n(X \le k) = \sum_{i=0}^k B(n; p_0; i) = F(k)$$

Aufgabentyp 2

Gegeben: n, H_0 , Signifikanzniveau α

Gesucht: Annahme-und Ablehnungsbereich


$$P_{p_0}^n(\overline{A}) \le \alpha$$

$$P_{p_0}^n(X \le k) \le \alpha$$

6 Analytische Geometrie

6.1 Vektorrechung in der Ebene

6.1.1 Vektor - Abstand - Steigung - Mittelpunkt

Vektor - Ortsvektor

 \bullet Vektor \vec{v} - Menge aller parallelgleicher Pfeile

$$\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}$$

 \bullet Ortsvektor \vec{v} - Vektor zwischen einem Punkt und dem

 ${\bf Koordinate nursprung}$

 $A(x_a/y_a)$

$$\vec{A} = \vec{OA} = \begin{pmatrix} x_a \\ y_a \end{pmatrix}$$

 \bullet Gegenvektor \vec{v} - gleiche Länge und Richtung aber entgegengesetzte Orientierung

$$\vec{v} = \begin{pmatrix} -x \\ -y \end{pmatrix}$$

Vektoren: $\vec{AB} = \vec{v_3} = \vec{v_4} = \vec{v_5}$ $= \begin{pmatrix} 5 \\ -2 \end{pmatrix}$

Ortsvektor: $\vec{A} = \vec{v_1} = \begin{pmatrix} -1\\ 3 \end{pmatrix}$

Ortsvektor: $\vec{B} = \vec{v_2} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$

Gegenvektor zu $\vec{v_5} = \begin{pmatrix} -5\\ 2 \end{pmatrix}$

Vektor zwischen 2 Punkten

2 Punkte:
$$A(x_a/y_a)$$
 $B(x_b/y_b)$
 $\vec{AB} = \begin{pmatrix} x_b - x_a \\ y_b - y_a \end{pmatrix} = \begin{pmatrix} x_c \\ y_c \end{pmatrix}$

Punkte: A(-1/3) B(4/1)Vektor zwischen zwei Punkten $\vec{AB} = \begin{pmatrix} 4+1\\1-3 \end{pmatrix} = \begin{pmatrix} 5\\-2 \end{pmatrix}$

Länge des Vektors - Betrag des Vektors - Abstand zwischen zwei Punkten

$$\begin{vmatrix} \vec{AB} \\ \vec{AB} \end{vmatrix} = \sqrt{x_c^2 + y_c^2}$$
$$= \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2}$$

$$\begin{vmatrix} \vec{AB} \\ \vec{AB} \end{vmatrix} = \begin{vmatrix} \vec{AB} \end{vmatrix} = \sqrt{5^2 + (-2)^2}$$
$$\begin{vmatrix} \vec{AB} \\ \vec{AB} \end{vmatrix} = \sqrt{29}$$
$$\begin{vmatrix} \vec{AB} \\ \vec{AB} \end{vmatrix} = 5,39$$

Steigung der Graden AB

$$\vec{AB} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Steigung der Graden AB

$$m = \frac{y}{x}$$

 $m = \frac{y}{x}$ Winkel des Vektors mit der x-Achse

$$\tan \alpha = m$$

Steigng der Geraden AB

Mittelpunkt der Strecke AB

$$\vec{M} = \frac{1}{2} \left(\vec{A} + \vec{B} \right)$$

$$\vec{M} = \frac{1}{2} \left(\begin{pmatrix} x_a \\ y_a \end{pmatrix} + \begin{pmatrix} x_b \\ y_b \end{pmatrix} \right)$$

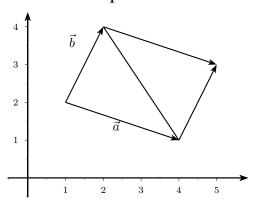
$$M(\frac{x_a + x_b}{2} / \frac{y_a + y_b}{2})$$

Mittelpunkt der Strecke AB

$$M = \frac{1}{2} \begin{pmatrix} 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 1\frac{1}{2} \\ 2 \end{pmatrix}$$

$$M(1\frac{1}{2}/2)$$


Vektorkette

Punkt:
$$A(x_a/y_a)$$

Vektor: $\vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}$
 $\vec{OB} = \vec{OA} + \vec{v}$ $\vec{B} = \vec{A} + \vec{v}$
 $\begin{pmatrix} x_B \\ y_B \end{pmatrix} = \begin{pmatrix} x_A \\ y_A \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix}$

Interaktive Inhalte:

hier klicken

Skalarprodukt - Fläche - Winkel 6.1.2

$$\vec{a} = \left(\begin{array}{c} x_a \\ y_a \end{array} \right) \quad \vec{b} = \left(\begin{array}{c} x_b \\ y_b \end{array} \right)$$

$$\vec{a} = \left(\begin{array}{c} 3 \\ -1 \end{array} \right) \quad \vec{b} = \left(\begin{array}{c} 1 \\ 2 \end{array} \right)$$

Steigung der Vektoren

$$m_a = \frac{y_a}{x_a}$$
 $m_a = \frac{y_b}{x_b}$
 $m_a = m_b \Rightarrow \text{Vektoren sind parallel}$

Steigung
$$m_s = \frac{y_a}{x_a} = \frac{-1}{3} = -\frac{1}{3}$$
 $m_b = \frac{y_b}{x_b} = \frac{2}{1} = 2$

Skalarprodukt

$$\vec{a} \circ \vec{b} = \begin{pmatrix} x_a \\ y_a \end{pmatrix} \circ \begin{pmatrix} x_b \\ y_b \end{pmatrix} = x_a \cdot x_b + y_a \cdot y_b$$

Senkrechte Vektoren:

$$\vec{a} \circ \vec{b} = 0 \Rightarrow \vec{a} \perp \vec{b}$$

$$\vec{a} \circ \vec{b} == \left(\begin{array}{c} 3 \\ -1 \end{array} \right) \circ \left(\begin{array}{c} 1 \\ 2 \end{array} \right) = 3 \cdot 1 + -1 \cdot 2 = 1$$

Fläche aus 2 Vektoren

Fläche des Parallelogramms aus \vec{a}, \vec{b}

$$A = \left| \begin{array}{cc} x_a & x_b \\ y_a & y_b \end{array} \right| = x_a \cdot y_b - y_a \cdot x_b$$

Fläche des Dreiecks aus \vec{a}, \vec{b}

$$A = \frac{1}{2} \begin{vmatrix} x_a & x_b \\ y_a & y_b \end{vmatrix} = \frac{1}{2} (x_a \cdot y_b - y_a \cdot x_b)$$

Fläche des Parallelogramms aus \vec{a}, \vec{b}

$$A = \begin{vmatrix} 3 & 1 \\ -1 & 2 \end{vmatrix} = 3 \cdot 2 - -1 \cdot 1 = 7$$

Fläche des Parallelogramms aus
$$\vec{a}$$
, \vec{b}

$$A = \begin{vmatrix} 3 & 1 \\ -1 & 2 \end{vmatrix} = 3 \cdot 2 - -1 \cdot 1 = 7$$
Fläche des Dreiecks aus \vec{a} , \vec{b}

$$A = \frac{1}{2} \begin{vmatrix} 3 & 1 \\ -1 & 2 \end{vmatrix} = \frac{1}{2} (3 \cdot 2 - (-1) \cdot 1) = 3\frac{1}{2}$$

Winkel zwischen Vektoren

$$\cos \alpha = \frac{\vec{a} \circ \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$
$$\cos \alpha = \frac{x_a \cdot x_b + y_a \cdot y_b}{\sqrt{x_a^2 + y_a^2} \cdot \sqrt{x_b^2 + y_b^2}}$$

$$\cos \alpha = \frac{\vec{a} \circ \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

$$\cos \alpha = \frac{3 \cdot 1 + -1 \cdot 2}{\sqrt{3^2 + (-1)^2} \cdot \sqrt{1^2 + 2^2}}$$

$$\cos \alpha = \left| \frac{1}{3, 16 \cdot 2, 24} \right|$$

$$\cos \alpha = |0, 141|$$

 $\cos \alpha = [0, 141]$ $\alpha = 81, 9$

Schnittwinkel:

Interaktive Inhalte:

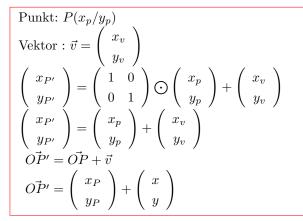
hier klicken

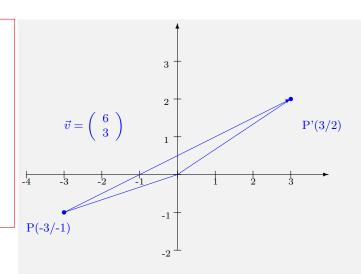
6.1.3 Abbildungen

Lineare Abbildung in Matrixform - Koordinatenform

Matrixform

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \bigodot \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} e \\ f \end{array}\right)$$


 ${\bf Koordinaten form}$


$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a \cdot x + b \cdot y \\ c \cdot x + d \cdot y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a \cdot x + b \cdot y + e \\ c \cdot x + d \cdot y + f \end{pmatrix}$$

$$x' = a \cdot x + b \cdot y + e$$
 $y' = c \cdot x + d \cdot y + f$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 4 \\ 3 \cdot 5 + 4 \cdot 4 \end{bmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{bmatrix} 13 \\ 31 \end{bmatrix}$$

Verschiebung

$$P(-3/-1) \qquad \vec{v} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

$$O\vec{P}' = O\vec{P} + \vec{v}$$

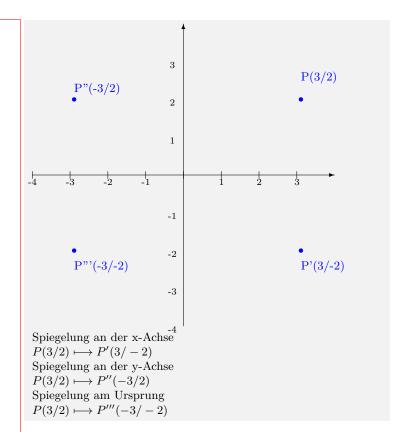
$$O\vec{P}' = \begin{pmatrix} -3 \\ -1 \end{pmatrix} + \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

$$O\vec{P}' = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$P'(3/2)$$

Spiegelung an den Koordinatenachsen

Spiegelung an der x-Achse

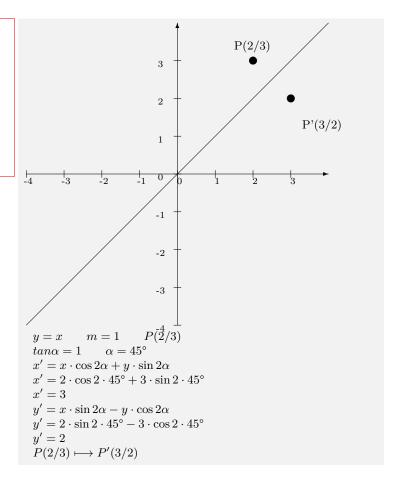

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \bigodot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$$
$$x' = x \qquad y' = -y$$

Spiegelung an der y-Achse

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \bigodot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$$
$$x' = -x \qquad y' = y$$

Spiegelung am Ursprung

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \bigodot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$$
$$x' = -x \qquad y' = -y$$


Spiegelung an der Urspungsgerade

$$y = m \cdot x \qquad \tan \alpha = m$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix} \bigodot \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \cdot \cos 2\alpha + y \cdot \sin 2\alpha \\ x \cdot \sin 2\alpha - y \cdot \cos 2\alpha \end{pmatrix}$$

$$x' = x \cdot \cos 2\alpha + y \cdot \sin 2\alpha \qquad y' = x \cdot \sin 2\alpha - y \cdot \cos 2\alpha$$

Zentrische Streckung

Streckzentrum: Z(0/0)

Streckungsfaktor :k

Urpunkt: $P(x_P/y_P)$

Bildpunkt: $P'(x_{P'}/y_{P'})$

Endpulse:
$$f(x_{P'/y_{P'}})$$

$$\begin{pmatrix} x_{P'} \\ y_{P'} \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \odot \begin{pmatrix} x_p \\ y_p \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x_{P'} \\ y_{P'} \end{pmatrix} = \begin{pmatrix} k \cdot x \\ k \cdot y \end{pmatrix}$$

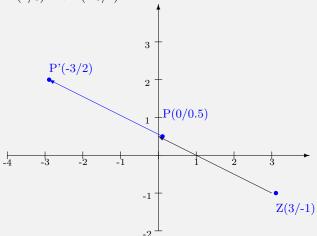
Streckzentrum: $Z(x_z/y_z)$

Streckungsfaktor: k

Urpunkt: $P(x_P/y_P)$

Bildpunkt: $P'(x_{P'}/y_{P'})$

Vektorform


$$\vec{ZP'} = k \cdot \vec{ZP}$$

$$\begin{pmatrix} x_{P'} - x_Z \\ y_{P'} - y_Z \end{pmatrix} = k \cdot \begin{pmatrix} x_P - x_Z \\ y_P - y_Z \end{pmatrix}$$

$$\vec{OP'} = k \cdot \vec{ZP} + \vec{OZ}$$

$$\begin{pmatrix} x_{P'} \\ y_{P'} \end{pmatrix} = k \cdot \begin{pmatrix} x_P - x_Z \\ y_P - y_Z \end{pmatrix} + \begin{pmatrix} x_Z \\ y_Z \end{pmatrix}$$

Streckzentrum: Z(3/-1)

Streckungsfaktor:2

Urpunkt: P(0/0,5)

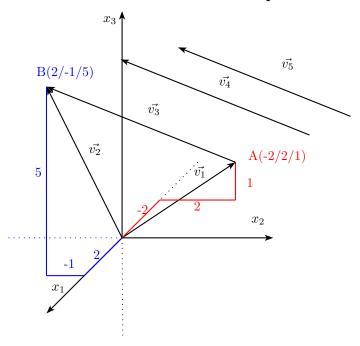
Bildpunkt: $P'(x_{P'}/y_{P'})$

$$\overrightarrow{OP'} = k \cdot \overrightarrow{ZP} + \overrightarrow{OZ}
\begin{pmatrix} x_{P'} \\ y_{P'} \end{pmatrix} = 2 \cdot \begin{pmatrix} 0 - 3 \\ 0, 5 - (-1) \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \end{pmatrix}
\begin{pmatrix} x_{P'} \\ y_{P'} \end{pmatrix} = 2 \cdot \begin{pmatrix} -3 \\ 1, 5 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \end{pmatrix}
\begin{pmatrix} x_{P'} \\ y_{P'} \end{pmatrix} = \begin{pmatrix} -6 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \end{pmatrix}
\begin{pmatrix} x_{P'} \\ y_{P'} \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}
P'(-3/2)$$

Drehung um den Ursprung

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \bigodot \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x' = x \cdot \cos \alpha - y \cdot \sin \alpha \\ y' = x \cdot \sin \alpha + y \cdot \cos \alpha \end{pmatrix}$$

 $x \cdot \cos \alpha - y \cdot \sin \alpha$ $x \cdot \sin \alpha + y \cdot \cos \alpha$


Orthogonale Affinität mit der x-Achse als Affinitätsachse

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \bigodot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ k \cdot y \end{pmatrix}$$
$$x' = x \qquad y' = k \cdot y$$

Vektor Analytische Geometrie

6.2 Vektor

6.2.1 Vektor - Abstand - Mittelpunkt

Vektor - Ortsvektor

 \bullet Vektor \vec{v} - Menge aller parallelgleicher Pfeile

$$\vec{v} = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right)$$

ullet Ortsvektor $ec{v}$ - Vektor zwischen einem Punkt und dem Koordinatenursprung

 $A(x_a/y_a)$

$$\vec{A} = \vec{OA} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

 \bullet Gegenvektor \vec{v} - gleiche Länge und Richtung aber entgegengesetzte Orientierung

$$\vec{v} = \begin{pmatrix} -x_1 \\ -x_2 \\ -x_3 \end{pmatrix}$$

Vektoren: $\vec{AB} = \vec{v_3} = \vec{v_4}$

Vektoren: $AB = \vec{v_3} = \vec{v_4}$ $= \begin{pmatrix} 4 \\ -3 \\ 4 \end{pmatrix}$ Ortsvektor: $\vec{A} = \vec{v_1} = \begin{pmatrix} -2 \\ 2 \\ 2 \end{pmatrix}$ Ortsvektor: $\vec{B} = \vec{v_2} = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}$ Gegenvektor zu $\vec{v_5} = \begin{pmatrix} -4 \\ 3 \\ -4 \end{pmatrix}$

Vektor zwischen 2 Punkten

2 Punkte:
$$A(a_1/a_2/a_3)$$
 $B(b_1/b_2/b_3)$

$$\vec{AB} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ b_3 - a_3 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

Punkte: A(-2/2/1) B(2/-1/5)Vektor zwischen zwei Punkten

$$\vec{AB} = \begin{pmatrix} 2+2\\ -1-2\\ 5-1 \end{pmatrix} = \begin{pmatrix} 4\\ -3\\ 4 \end{pmatrix}$$

Länge des Vektors - Betrag des Vektors - Abstand zwischen zwei Punkten

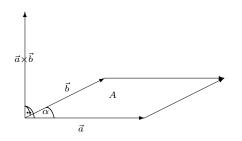
$$\begin{vmatrix} \vec{AB} \\ \vec{AB} \end{vmatrix} = \sqrt{c_1^2 + c_2^2 + c_3^2}$$
$$= \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + (b_3 - a_3)^2}$$

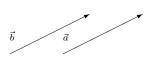
$$\begin{vmatrix} \vec{AB} &= \sqrt{c_1^2 + c_2^2 + c_3^2} \\ |\vec{AB}| &= \sqrt{4^2 + (-3)^2 + 4^2} \\ |\vec{AB}| &= \sqrt{41} \\ |\vec{AB}| &= 6, 4 \end{vmatrix}$$

Mittelpunkt der Strecke AB

$$\vec{M} = \frac{1}{2} \left(\vec{A} + \vec{B} \right)$$

$$\vec{M} = \frac{1}{2} \left(\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \right)$$


$$M(\frac{a_1 + b_1}{2} / \frac{a_2 + b_2}{2} / \frac{a_3 + b_3}{2})$$


Mittelpunkt der Strecke AB
$$\vec{M} = \frac{1}{2} \begin{pmatrix} \vec{A} + \vec{B} \end{pmatrix}$$

$$\vec{M} = \frac{1}{2} \begin{pmatrix} \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} \end{pmatrix}$$

$$\vec{M} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 3 \end{pmatrix}$$

$$M(0/\frac{1}{2}/3)$$

Interaktive Inhalte:

hier klicken

6.2.2 Winkel - Skalarprodukt - Vektorprodukt - Abhängigkeit

$$\vec{a} = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \quad \vec{b} = \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right)$$

$$\vec{a} = \left(\begin{array}{c} 2\\1\\2 \end{array}\right) \quad \vec{b} = \left(\begin{array}{c} -2\\1\\-2 \end{array}\right)$$

Länge der Vektoren

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$
$$|\vec{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2}$$

Länge der Vektoren:
$$\begin{aligned} |\vec{a}| &= \sqrt{a_1^2 + a_2^2 + a_3^2} \\ |\vec{a}| &= \sqrt{2^2 + 1^2 + 2^2} \\ |\vec{a}| &= 3 \\ |\vec{b}| &= \sqrt{b_1^2 + b_2^2 + b_3^2} \\ |\vec{b}| &= \sqrt{(-2)^2 + 1^2 + (-2)^2} \\ |\vec{b}| &= 3 \end{aligned}$$

Analytische Geometrie Vektor

Skalarprodukt

$$\vec{a} \circ \vec{b} = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \circ \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right) =$$

 $a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$

Senkrechte Vektoren:

$$\vec{a} \circ \vec{b} = 0 \Rightarrow \vec{a} \perp \vec{b}$$

Skalarprodukt:

$$\vec{a} \circ \vec{b} = 2 \cdot -2 + 1 \cdot 1 + 2 \cdot -2 = -7$$

Vektorprodukt - Fläche des Parallelogramms

$$\vec{c} \perp \vec{a} \text{ und } \vec{c} \perp \vec{b}$$

$$\vec{c} = \vec{a} \times \vec{b} = \begin{pmatrix} a_2 \cdot b_3 - a_3 \cdot b_2 \\ a_3 \cdot b_1 - b_3 \cdot a_1 \\ a_1 \cdot b_2 - a_2 \cdot b_1 \end{pmatrix}$$

$$\vec{c} = \vec{a} \times \vec{b} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

Fläche des Parallelogramms:

$$A = \left| \vec{a} \times \vec{b} \right|$$

$$A = \left| \vec{a} \times \vec{b} \right|$$

$$A = \left| \vec{c} \right| = \sqrt{c_1^2 + c_2^2 + c_3^2}$$

Fläche des Dreiecks aus \vec{a}, \vec{b}

$$A = \frac{1}{2} \left| \vec{a} \times \vec{b} \right|$$

$$\vec{a} \times \vec{b} = \begin{pmatrix} 1 \cdot (-2) - 2 \cdot 1 \\ 2 \cdot (-2) - (-2) \cdot 2 \\ 2 \cdot 1 - 1 \cdot (-2) \end{pmatrix}$$

$$\vec{c} = \vec{a} \times \vec{b} = \begin{pmatrix} -4 \\ 0 \\ 4 \end{pmatrix}$$

$$|\vec{c}| = \sqrt{(-4)^2 + 0^2 + 4^2}$$

$$|\vec{c}| = 5,657$$

Winkel zwischen Vektoren

$$\cos \alpha = \frac{\vec{a} \circ \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

$$\cos \alpha = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}$$

Schnittwinkel:

$$\cos \alpha = \frac{\vec{a} \circ b}{|\vec{a}| \cdot |\vec{b}|}$$

$$\cos \alpha = \begin{vmatrix} -7\\3 \cdot 3\end{vmatrix}$$

$$\cos \alpha = \begin{vmatrix} -\frac{7}{9}\\ -\frac{7}{9}\end{vmatrix}$$

$$\alpha = 38,942$$

Lineare Abhängigkeit von 2 Vektoren

$$a_1 = b_1k /: b_1 \Rightarrow k_1$$

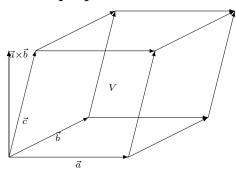
$$a_2 = b_2k /: b_2 \Rightarrow k_2$$

$$a_3 = b_3k /: b_3 \Rightarrow k_3$$

$$k_1 = k_2 = k_3 \Rightarrow$$

Vekoren sind linear abhängig - parallel nicht alle k gleich \Rightarrow

Vektoren sind linear unabhängig - nicht parallel


Lineare Abhängigkeit von 2 Vektoren

 \Rightarrow Vektoren sind linear unabhängig - nicht parallel

Interaktive Inhalte:

Analytische Geometrie Vektor

6.2.3 Spatprodukt - lineare Abhängigkeit - Basisvektoren - Komplanarität

$$\vec{a} = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \qquad \vec{b} = \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right) \qquad \vec{c} = \left(\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array} \right)$$

Spatprodukt: $(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} =$

$$\left(\left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) \times \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right) \right) \cdot \left(\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array} \right)$$

Vektorprodukt von \vec{a}, \vec{b} skalar multipliziert mit \vec{c}

$$\vec{a} = \begin{pmatrix} 3 \\ -3 \\ 4 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -4 \\ -7 \\ 2 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} 3 \\ -3 \\ 4 \end{pmatrix} \times \begin{pmatrix} -4 \\ -7 \\ 2 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} -3 \cdot 2 - 4 \cdot (-7) \\ 4 \cdot (-4) - 2 \cdot 3 \\ 3 \cdot (-7) - (-3) \cdot (-4) \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix} =$$

$$\begin{pmatrix} 22 \\ -22 \\ -33 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix} = 44$$

Spatprodukt = Wert der Determinante

Spatprodukt: $(\vec{a}, \vec{b}, \vec{c}) =$ $(\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ $(\vec{a} \times \vec{b}) \cdot \vec{c} = a_1 \cdot b_2 \cdot c_3 + b_1 \cdot c_2 \cdot a_3 + c_1 \cdot a_2 \cdot b_3$ $-c_1 \cdot b_2 \cdot a_3 - a_1 \cdot c_2 \cdot b_3 - b_1 \cdot a_2 \cdot c_3$

$$\vec{a} = \begin{pmatrix} 3 \\ -3 \\ 4 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -4 \\ -7 \\ 2 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix}$$

$$D = \begin{vmatrix} 3 & -4 & 7 & 3 & -4 \\ -3 & -7 & 2 & -3 & -7 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$D = 3 \cdot (-7) \cdot 2 + (-4) \cdot 2 \cdot 4 + 7 \cdot (-3) \cdot 2$$

$$-7 \cdot (-7) \cdot 4 - 3 \cdot 2 \cdot 2 - (-4) \cdot (-3) \cdot 2$$

$$D = 44$$

Spatprodukt - Volumen

 \bullet Volumen von Prisma oder Spat

$$V = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

•Volumen einer Pyramide mit den Grundflächen:

 ${\it Quadrat}, {\it Rechteck}, {\it Parallelogramm}$

$$V = \frac{1}{3}(\vec{a} \times \vec{b}) \cdot \vec{c}$$

• Volumen ein dreiseitigen Pyramide

$$V = \frac{1}{6}(\vec{a} \times \vec{b}) \cdot \vec{c}$$

$$\vec{a} = \begin{pmatrix} 3 \\ -3 \\ 4 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -4 \\ -7 \\ 2 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix}$$

$$V = \begin{vmatrix} 3 & -4 & 7 & 3 & -4 \\ -3 & -7 & 2 & -3 & -7 \\ 4 & 2 & 2 & 4 & 2 \end{vmatrix}$$

$$V = 3 \cdot (-7) \cdot 2 + (-4) \cdot 2 \cdot 4 + 7 \cdot (-3) \cdot 2$$

$$V = 3 \cdot (-7) \cdot 4 - 3 \cdot 2 \cdot 2 - (-4) \cdot (-3) \cdot 2$$

$$V = 44$$

Analytische Geometrie Vektor

Eigenschaften von 3 Vektoren

 $\bullet \ (\vec{a} \times \vec{b}) \cdot \vec{c} = 0 \Rightarrow$ die drei Vektoren $\vec{a}, \vec{b}, \vec{c}$

- sind linear abhängig

- liegen in einer Ebene (komplanar)

- sind keine Basisvektoren

• $(\vec{a} \times \vec{b}) \cdot \vec{c} \neq 0 \Rightarrow$ die drei Vektoren $\vec{a}, \vec{b}, \vec{c}$

- sind linear unabhängig

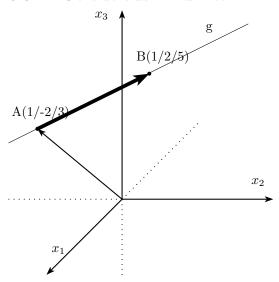
- liegen nicht in einer Ebene

- sind Basisvektoren

 $\vec{a} = \begin{pmatrix} 3 \\ -3 \\ 4 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} -4 \\ -7 \\ 2 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} 7 \\ 2 \\ 2 \end{pmatrix}$ $(\vec{a} \times \vec{b}) \cdot \vec{c} = 44$

 $(\vec{a} \times \vec{b}) \cdot \vec{c} \neq 0 \Rightarrow$ die drei Vektoren $\vec{a}, \vec{b}, \vec{c}$

- sind linear unabhängig


- liegen nicht in einer Ebene

- sind Basisvektoren

Interaktive Inhalte:

6.3 Gerade

6.3.1 Gerade aus 2 Punkten

Punkte: $A(a_1/a_2/a_3)$ $B(b_1/b_2/b_3)$

Richtungsvektor

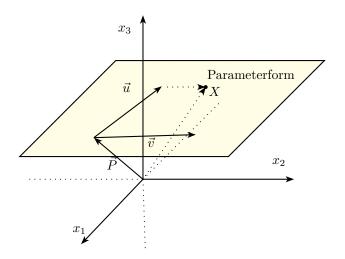
$$\vec{AB} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ b_3 - a_2 \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

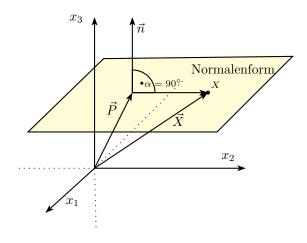
Punkt A oder B als Aufpunkt wählen

$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

Punkte: A(1/-3/3) B(1/2/5) Gerade aus zwei Punkten:

$$\vec{AB} = \begin{pmatrix} 1-1\\2+3\\5-3 \end{pmatrix} = \begin{pmatrix} 0\\5\\2 \end{pmatrix}$$
$$\vec{x} = \begin{pmatrix} 1\\-3\\3 \end{pmatrix} + \lambda \begin{pmatrix} 0\\5\\2 \end{pmatrix}$$


Besondere Geraden


$$x_1 - \text{Achse}$$
 $x_2 - \text{Achse}$ $x_3 - \text{Achse}$ $\vec{x} = \lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $\vec{x} = \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $\vec{x} = \lambda \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

Interaktive Inhalte:

6.4 Ebene

6.4.1 Parameterform - Normalenform

Parameterform

 \vec{x} - Ortsvektor zu einem Punkt X in der Ebene

 \vec{P} - Aufpunkt (Stützvektor, Ortsvektor)

 \vec{u}, \vec{v} - Richtungsvektoren

 λ, σ -Parameter

$$\vec{x} = \vec{P} + \lambda \cdot \vec{u} + \sigma \cdot \vec{v}$$

$$\vec{x} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} + \lambda \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \sigma \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Normalenform - Koordinatenform

 \vec{x} - Ortsvektor zu einem Punkt X in der Ebene

 \vec{n} - Normalenvektor

 \vec{P} - Aufpunkt (Stützvektor, Ortsvektor)

$$\vec{n} \cdot (\vec{x} - \cdot \vec{p}) = 0$$

$$\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \circ \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \end{pmatrix} = 0$$

Koordinatenform:

$$n_1(x_1 - p_1) + n_2(x_2 - p_2) + n_3(x_3 - p_3) = 0$$

$$n_1x_1 - n_1p_1 + n_2x_2 - n_2p_2 + n_3x_3 - n_3p_3 = 0$$

$$c = -(n_1p_1 + n_2p_2 + n_3p_3)$$

$$n_1 x 1 + n_2 x_2 + n_3 x_3 + c = 0$$

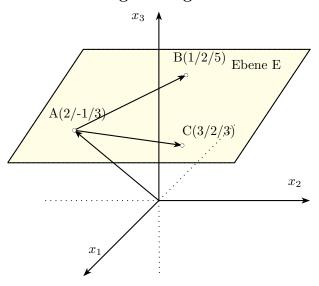
Normalenvektor:
$$\vec{n} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$

Punkt in der Ebene P(2/-1/1)

Nomalenform:

$$\vec{n} \cdot (\vec{x} - \cdot \vec{p}) = 0$$

$$\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} \circ \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} - \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \end{pmatrix} = 0$$


Koordinatenform:

$$1(x_1 - 2) + 2(x_2 + 1) + 3(x_3 - 1) = 0$$

$$x_1 + 2x_2 + 3x_3 - 3 = 0$$

Besondere Ebenen

Ebene	Parameterform	Koordinatenform
x1-x2	$ \vec{x} = \lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \sigma \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} $	$x_3 = 0$
x1-x3	$\vec{x} = \lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \sigma \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	$x_2 = 0$
x2-x3	$\vec{x} = \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \sigma \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	$x_1 = 0$

6.4.2 Ebenengleichung aufstellen

Ebene aus 3 Punkten

Punkte: $A(a_1/a_2/a_3)$ $B(b_1/b_2/b_3)$ $C(c_1/c_2/c_3)$

Die 3 Punkte dürfen nicht auf einer Geraden liegen.

Ebene aus drei Punkten:

Richtungsvektor:
$$\vec{AB} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ b_3 - a_3 \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$$
Richtungsvektor: $\vec{AC} = \begin{pmatrix} c_1 - a_1 \\ c_2 - a_2 \\ c_3 - a_2 \end{pmatrix} = \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$

Ebenengleichung aus Aufpunkt und den Richtungsvektoren.

$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} + \sigma \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$$

Punkte: A(2/-1/3) B(1/2/5) C(3/2/3)

Ebene aus drei Punkten

$$\vec{AB} = \begin{pmatrix} 1-2\\2+1\\5-3 \end{pmatrix} = \begin{pmatrix} -1\\3\\2 \end{pmatrix}$$

$$\vec{AC} = \begin{pmatrix} 3-2\\2+1\\3-3 \end{pmatrix} = \begin{pmatrix} 1\\3\\0 \end{pmatrix}$$

$$\vec{x} = \begin{pmatrix} 2\\-1\\3 \end{pmatrix} + \lambda \begin{pmatrix} -1\\3\\2 \end{pmatrix} + \sigma \begin{pmatrix} 1\\3\\0 \end{pmatrix}$$

Ebene aus Gerade und Punkt

Der Punkte darf nicht auf der Geraden liegen.

$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Punkt: $C(c_1/c_2/c_3)$

Richtungsvektor zwischen Aufpunkt A und dem Punkt C

$$\vec{AC} = \begin{pmatrix} c_1 - a_1 \\ c_2 - a_2 \\ c_3 - a_2 \end{pmatrix} = \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$$
$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \sigma \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$$

Gerade:
$$\vec{x} = \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ -3 \end{pmatrix}$$
Punkt: $C(2/0/1)$

$$\vec{AC} = \begin{pmatrix} 2-1 \\ 0-3 \\ 1+4 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix}$$

$$\vec{x} = \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ -3 \end{pmatrix} + \sigma \begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix}$$

Ebene aus zwei parallelen Geraden

$$\begin{aligned} & \text{Gerade 1: } \vec{x} = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) + \lambda \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right) \\ & \text{Gerade 2: } \vec{x} = \left(\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array} \right) + \sigma \left(\begin{array}{c} d_1 \\ d_2 \\ d_3 \end{array} \right) \end{aligned}$$

Bei parallelen Geraden sind Richtungsvektoren linear abhängig. Für die Ebenengleichung muss ein 2. Richtungsvektor erstellt werden. 2. Richtungsvektor zwischen den Aufpunkten A und C.

Ebenengleichung in Parameterform

$$\vec{AC} = \begin{pmatrix} c_1 - a_1 \\ c_2 - a_2 \\ c_3 - a_2 \end{pmatrix} = \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$$
$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \sigma \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$$

Gerade 1:
$$\vec{x} = \begin{pmatrix} 1 \\ 3 \\ 0 \\ \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 0 \\ -1 \\ 4 \\ 5 \end{pmatrix}$$
Gerade 2: $\vec{x} = \begin{pmatrix} 3 \\ 4 \\ 5 \\ \end{pmatrix} + \sigma \begin{pmatrix} 4 \\ 0 \\ -2 \\ \end{pmatrix}$

Richtungsvektoren:

 \Rightarrow Geraden sind parallel

Aufpunkt von Gerade 2 in Gerade 1

 \rightarrow

Geraden sind echt parallel

2. Richtungsvektor zwischen den Aufpunkten A und C

$$\vec{AC} = \begin{pmatrix} 3-1\\4-3\\5-0 \end{pmatrix} = \begin{pmatrix} 2\\1\\5 \end{pmatrix}$$

Ebenengleichung in Parameterform

$$\vec{x} = \begin{pmatrix} 1\\3\\0 \end{pmatrix} + \lambda \begin{pmatrix} 2\\0\\-1 \end{pmatrix} + \sigma \begin{pmatrix} 2\\1\\5 \end{pmatrix}$$

Ebene aus zwei sich schneidenden Geraden

$$\begin{aligned} & \text{Gerade 1: } \vec{x} = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) + \lambda \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right) \\ & \text{Gerade 2: } \vec{x} = \left(\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array} \right) + \sigma \left(\begin{array}{c} d_1 \\ d_2 \\ d_3 \end{array} \right) \end{aligned}$$

Bei sich schneidenden Geraden sind Richtungsvektoren linear unabhängig.

Ebenengleichung in Parameterform

$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \sigma \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$$

Gerade 1:
$$\vec{x} = \begin{pmatrix} 1 \\ -2 \\ 8 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -7 \\ -8 \end{pmatrix}$$
Gerade 2: $\vec{x} = \begin{pmatrix} 9 \\ -5 \\ 3 \end{pmatrix} + \sigma \begin{pmatrix} -4 \\ -4 \\ -3 \end{pmatrix}$

Die Geraden schneiden sich im Punkt S(5, -9, 0)

Ebenengleichung in Parameterform

$$\vec{x} = \begin{pmatrix} 1 \\ -2 \\ 8 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -7 \\ -8 \end{pmatrix} + \sigma \begin{pmatrix} -4 \\ -4 \\ -3 \end{pmatrix}$$

Interaktive Inhalte:

3 Punkte | Punkt und Gerade

Parallele Geraden

Parameterform - Koordinatenform 6.4.3

1. Methode: Determinante

$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \sigma \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

$$D = \begin{vmatrix} x_1 - a_1 & b_1 & c_1 \\ x_2 - a_2 & b_2 & c_2 \\ x_3 - a_3 & b_3 & c_3 \end{vmatrix} \begin{vmatrix} x_1 - a_1 & b_1 \\ x_2 - a_2 & b_2 = 0 \\ x_3 - a_3 & b_3 & c_3 \end{vmatrix} \begin{vmatrix} x_3 - a_3 & b_3 \\ x_3 - a_3 & b_3 \end{vmatrix}$$

$$(x_1 - a_1) \cdot b_2 \cdot c_3 + b_1 \cdot c_2 \cdot (x_3 - a_3) + c_1 \cdot (x_2 - a_2) \cdot b_3 - c_1 \cdot b_2 \cdot (x_3 - a_3) - c_1 \cdot c_2 \cdot b_3 - b_1 \cdot (x_2 - a_2) \cdot c_3 = 0$$

Koordinatenform:

$$n_1 x_1 + n_2 x_2 + n_3 x_3 + k = 0$$

$$\vec{x} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix} + \sigma \begin{pmatrix} 2 \\ -5 \\ 0 \end{pmatrix}$$

$$D = \begin{vmatrix} x_1 - 1 & -2 & 2 \\ x_2 + 3 & 4 & -5 \\ x_3 - 2 & 3 & 0 \end{vmatrix} \begin{vmatrix} x_1 - 1 & -2 \\ x_2 + 3 & 4 & = 0 \\ x_3 - 2 & 3 & 0 \end{vmatrix} \begin{vmatrix} x_3 - 2 & 3 \\ x_3 - 2 & 3 \end{vmatrix}$$

$$(x_1 - 1) \cdot 4 \cdot 0 + (-2) \cdot (-5) \cdot (x_3 - 2) + 2 \cdot (x_2 + 3) \cdot 3 - 2 \cdot 4 \cdot (x_3 - 2) - (x_1 - 1) \cdot (-5) \cdot 3 - (-2) \cdot (x_2 + 3) \cdot 0 = 0$$

$$15x_1 + 6x_2 + 2x_3 - 1 = 0$$

Koordinatenform:

$$15x_1 + 6x_2 + 2x_3 - 1 = 0$$

2. Methode: Vektorprodukt

$$\vec{x} = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) + \lambda \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right) + \sigma \left(\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array} \right)$$

Normalenvektor der Ebene mit dem Vektorprodukt

$$\vec{n} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \times \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} b_2 \cdot c_3 - b_3 \cdot c_2 \\ b_3 \cdot c_1 - c_3 \cdot b_1 \\ b_1 \cdot c_2 - b_2 \cdot c_1 \end{pmatrix}$$

$$\vec{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$

Normalenvektor der Ebene und Aufpunkt in die Koordinatenform einsetzen.

$$n_1 a_1 + n_2 a_2 + n_3 a_3 + k = 0$$

k berechnen

$$n_1 x_1 + n_2 x_2 + n_3 x_3 + k = 0$$

$$\vec{x} = \begin{pmatrix} 1 \\ 2 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \sigma \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Vektorprodukt:

$$\vec{n} = \vec{b} \times \vec{c} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \times \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -1 \cdot 1 - 0 \cdot 0 \\ 0 \cdot (-1) - 1 \cdot 1 \\ 1 \cdot 0 - (-1) \cdot (-1) \end{pmatrix}$$

$$\vec{n} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

Normalenvektor in die Koordinatenform einsetzen.

$$-1x_1 - 1x_2 - 1x_3 + k = 0$$

Aufpunkt in die Koordinatenform einsetzen.

$$-1 \cdot 1 - 1 \cdot 2 - 1 \cdot (-7) + k = 0$$

k = -4

Koordinatenform

$$-1x_1 - 1x_2 - 1x_3 - 4 = 0$$

Interaktive Inhalte:

Determinante

Vektorprodukt

6.4.4 Koordinatenform - Parameterform

1. Methode

$$n_1 x_1 + n_2 x_2 + n_3 x_3 + k = 0$$

 $\bullet x_1$ durch einen Parameter ersetzen

$$x_1 = \lambda$$

• x_2 durch einen Parameter σ ersetzen

$$x_2 = \sigma$$

 \bullet Koordinatenform nach x_3 auflösen

$$x_3 = -\frac{k}{n_3} - \frac{n_1}{n_3} x_1 - \frac{n_2}{n_3} x_2$$

• Ebene in Punktdarstellung :

$$x_1 = 0 + 1 \cdot \lambda + 0 \cdot \sigma$$

$$x_2 = 0 + 0 \cdot \lambda + 1 \cdot \sigma$$

$$x_3 = -\frac{k}{n_3} - \frac{n_1}{n_3}\lambda - \frac{n_2}{n_3}\sigma$$

• Parameterform der Ebene

$$\vec{x} = \begin{pmatrix} 0 \\ 0 \\ -\frac{k}{n_3} \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -\frac{n_1}{n_3} \end{pmatrix} + \sigma \begin{pmatrix} 0 \\ 1 \\ -\frac{n_2}{n_3} \end{pmatrix}$$

$$4x_1 + 8x_2 + 2x_3 - 2 = 0$$

- $\bullet x_1$ durch einen Parameter ersetzen $x_1 = \lambda$
- $\bullet x_2$ durch einen Parameter σ ersetzen
- $x_2 = \sigma$
- Koordinatenform nach x_3 auflösen $x_3 = -\frac{2}{2} \frac{4}{2}x_1 \frac{8}{2}x_2$

$$x_3 = \frac{2}{2} x_1 - 4x_2$$

• Ebene in Punktdarstellung :

$$x_1 = 0 + 1 \cdot \lambda + 0 \cdot \sigma$$

$$x_2 = 0 + 0 \cdot \lambda + 1 \cdot \sigma$$

$$x_3 = 1 - 2\lambda - 4\sigma$$

• Parameterform der Ebene

$$\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + \sigma \begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix}$$

$$4x_1 - 2 = 0$$

- $\bullet x_2$ durch einen Parameter ersetzen
- $x_2 = \lambda$
- • x_3 durch einen Parameter σ ersetzen
- Koordinatenform nach x_1 auflösen $x_1 = \frac{1}{2}$
- Ebene in Punktdarstellung :

$$x_1 = \frac{1}{2} + 0 \cdot \lambda + 0 \cdot \sigma$$

$$x_2 = 0 + 1 \cdot \lambda + 0 \cdot \sigma$$

$$x_3 = 0 + 0 \cdot \lambda + 1 \cdot \sigma$$

• Parameterform der Ebene

$$\vec{x} = \begin{pmatrix} \frac{1}{2} \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \sigma \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

2. Methode

- Drei beliebige Punkte, die in der Ebene liegen ermitteln.
- Die Richtungsvektoren müssen linear unabhängig sein.
- Ebenengleichung aus 3 Punkten aufstellen.

$$4x_1 + 8x_2 + 2x_3 - 2 = 0$$

 $\bullet x_1 = 0$ $x_2 = 0$ frei wählen und in die Ebenengleichung einsetzen. $\Rightarrow x_3 = 1$ und $P_1(0/0/1)$

• 2 weitere Punkte ermitteln: $P_2(1/0/-1)$ $P_3(0/1/-3)$

• Die Richtungvektoren sind linear unabhängig:

$$\left(\begin{array}{c} 1\\0\\-2 \end{array}\right) \left(\begin{array}{c} 0\\1\\-4 \end{array}\right)$$

• Parameterform der Ebene

$$\vec{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + \sigma \begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix}$$

Koordinatenform - Hessesche Normalenform

Koordinatenform:

$$n_1 x_1 + n_2 x_2 + n_3 x_3 + k_1 = 0$$

Normalenvektor

$$ec{n} = \left(egin{array}{c} n_1 \\ n_2 \\ n_3 \end{array}
ight)$$

Länge des Normalenvektors:

$$|\vec{n}| = \sqrt{n_1^2 + n_2^2 + n_3^2}$$

Hessesche Normalenform:

HNF:
$$\frac{n_1x_1 + n_2x_2 + n_3x_3 + \kappa_1}{\sqrt{n_1^2 + n_2^2 + n_3^2}} = 0$$

HNF:
$$\frac{n_1x_1 + n_2x_2 + n_3x_3 + k_1}{\sqrt{n_1^2 + n_2^2 + n_3^2}} = 0$$

$$k1 > 0$$
HNF:
$$\frac{n_1x_1 + n_2x_2 + n_3x_3 + k_1}{-\sqrt{n_1^2 + n_2^2 + n_3^2}} = 0$$

Koordinatenform:

$$15x_1 + 6x_2 + 2x_3 - 1 = 0$$
/ 15 \

$$\vec{n} = \begin{pmatrix} 15 \\ 6 \\ 2 \end{pmatrix}$$

Länge des Normalenvektors:

$$|\vec{n}| = \sqrt{x_1^2 + x_2^2 + x_3^2}$$
$$|\vec{n}| = \sqrt{15^2 + 6^2 + 2^2}$$

$$|\vec{n}| = \sqrt{15^2 + 6^2 + 2^2}$$

$$|\vec{n}|=16,3$$

Hessesche Normalenform:

HNF:
$$\frac{15x_1 + 6x_2 + 2x_3 - 1}{16,3} = 0$$

Interaktive Inhalte:

Kugel Analytische Geometrie

6.5 Kugel

Kugelgleichung 6.5.1

 $M(m_1/m_2/m_3)$ - Mittelpunkt der Kugel

 \boldsymbol{r} - Radius der Kugel

 $X(x_1/x_2/x_3)$ - beliebiger Punkt auf der Kugel

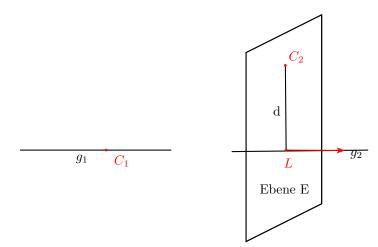
Kugelgleichung:

$$(x_1 - m_1)^2 + (x_2 - m_2)^2 + (x_2 - m_2)^2 = r^2$$

 $M(3/2/-4)-{\rm Mittelpunkt}$ der Kugel

r = 6 - Radius der Kugel

 $X(x_1/x_2/x_3)$ – beliebiger Punkt auf der Kugel


Kugelgleichung:

$$(x_1 - 3)^2 + (x_2 - 2)^2 + (x_2 + 4)^2 = 6^2$$

Analytische Geometrie Lagebeziehung

6.6 Lagebeziehung

6.6.1 Punkt - Gerade

Punkt C_1 liegt auf der Geraden g_1

Abstand d des Punktes C_2 von der Geraden g_2

$$\vec{x} = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right) + \lambda \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right)$$

Punkt: $C(c_1/c_2/c_3)$

$$c_1 = a_1 + b_1 \lambda_1 \implies \lambda_1$$

$$c_1 = a_2 + b_2 \lambda_2 \Rightarrow \lambda_2$$

$$c_1 = a_3 + b_3 \lambda_3 \Rightarrow \lambda_3$$

$$\lambda_1 = \lambda_2 = \lambda_3 \Rightarrow$$

Punkt liegt auf der Geraden

nicht alle λ gleich \Rightarrow

Punkt liegt nicht auf der Geraden

Lotfußpunkt und Abstand des Punktes berechnen.

Die Koordinatenform der Ebenengleichung aufstellen, die senkrecht zur Geraden ist und den Punkt C enthält.

Richtungsvektor der Geraden = Normalenvektor der Ebene. Der Lotfußpunkt ist der Schnittpunkt zwischen Gerade und Ebene.

Abstand des Punktes, ist die Länge des Vektors \vec{LC}

$$\vec{x} = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix} \quad \text{Punkt: } C(7, 9, -6)$$

$$7 = 1 \quad -2\lambda \quad / - 1$$

$$9 = 3 \quad -2\lambda \quad / - 3$$

$$-6 = -3 \quad +2\lambda \quad / + 3$$

$$6 = -2\lambda \quad / : -2 \quad \Rightarrow \lambda = -3$$

$$6 = -2\lambda \quad / : -2 \quad \Rightarrow \lambda = -3$$

$$-3 = 2\lambda \quad / : 2 \quad \Rightarrow \lambda = -1\frac{1}{2}$$

 \Rightarrow Punkt liegt nicht auf der Geraden

Lotfußpunkt und Abstand des Punktens berechnen.

Richtungsvektor der Geraden = Normalenvektor der Ebene.

$$-2x_1 - 2x_2 + 2x_3 + k = 0$$

C ist Punkt in der Ebene

$$-2 \cdot 7 - 2 \cdot 9 + 2 \cdot (-6) + k = 0$$

$$k = 44$$

$$-2x_1 - 2x_2 + 2x_3 + 44 = 0$$

Lotfußpunkt ist der Schnittpunkt zwischen Gerade und Ebene.

$$x_1 = 1 \quad -2\lambda$$

$$x_2 = 3 -2\lambda$$

$$x_3 = -3 + 2\lambda$$

$$-2(1-2\lambda) - 2(3-2\lambda) + 2(-3+2\lambda) + 44 = 0$$

$$12\lambda + 30 = 0$$

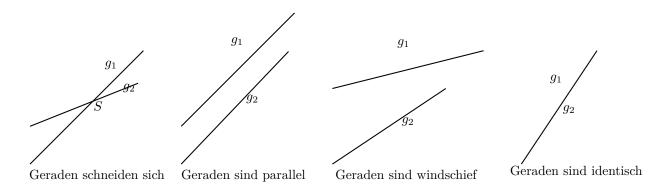
$$\lambda = \frac{-30}{12}$$

$$\vec{x} = \begin{pmatrix} 1\\3\\2 \end{pmatrix} - 2\frac{1}{2} \cdot \begin{pmatrix} -2\\-2 \end{pmatrix}$$

Lotfußpunkt: L(6, 8, -8)

$$\vec{CL} = \begin{pmatrix} 12 - 7 \\ 30 - 9 \\ -2\frac{1}{2} + 6 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix}$$

Abstand Punkt Corndo


$$\left| \vec{CL} \right| = \sqrt{(-1)^2 + (-1)^2 + (-2)^2}$$

Analytische Geometrie Lagebeziehung

Interaktive Inhalte:

hier klicken

6.6.2 Gerade - Gerade

Gerade 1:
$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Gerade 2: $\vec{x} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} + \sigma \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$

Richtungsvektoren linear abhängig (parallel) ?

Ja Nein

Aufpunkt von g1 auf g2? Geraden gleichsetzen

Ja Nein keine Lösung Lösung

identisch echt parallel windschief schneiden sich

Gerade 1:
$$\vec{x} = \begin{pmatrix} 1 \\ -2 \\ 8 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -7 \\ -8 \end{pmatrix}$$
Gerade 2: $\vec{x} = \begin{pmatrix} 9 \\ -5 \\ 3 \end{pmatrix} + \sigma \begin{pmatrix} -4 \\ -4 \\ -3 \end{pmatrix}$
Richtungsvektoren:

 \Rightarrow Geraden sind nicht parallel

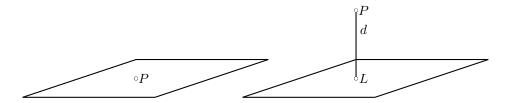
$$\begin{pmatrix} 1 \\ -2 \\ 8 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -7 \\ -8 \end{pmatrix} = \begin{pmatrix} 9 \\ -5 \\ 3 \end{pmatrix} + \sigma \begin{pmatrix} -4 \\ -4 \\ -3 \end{pmatrix}$$
$$1 + 4\lambda = 9 - 4\sigma /-1 /+ 4\sigma$$
$$-2 - 7\lambda = -5 - 4\sigma /+ 2 /+ 4\sigma$$
$$8 - 8\lambda = 3 - 3\sigma /- 8 /+ 3\sigma$$

$$\begin{array}{ll} I & 4\lambda + 4\sigma = 8 \\ II & -7\lambda + 4\sigma = -3 \\ III & -8\lambda - 3\sigma = -5 \end{array}$$

Aus den Gleichungen I und II λ und σ berechnen $\sigma = 1$

 $\lambda = 1$

 λ und σ in die verbleibende Gleichung einsetzen *III* $8+1\cdot(-8)=3+1\cdot(-3)$ 0 = 0


 λ oder σ in die Geradengleichung einsetzen

$$\vec{x} = \begin{pmatrix} 1 \\ -2 \\ 8 \end{pmatrix} + 1 \cdot \begin{pmatrix} 4 \\ -7 \\ -8 \end{pmatrix}$$
Schnittpunkt: $S(5, -9, 0)$

Interaktive Inhalte:

hier klicken

6.6.3 Punkt - Ebene (Koordinatenform)

Punkt liegt in der Ebene

Punkt liegt nicht in der Ebene

Punkt: $A(a_1/a_2/a_3)$

Ebene: $n_1x_1 + n_2x_2 + n_3x_3 + c_1 = 0$

 $n_1 \cdot a_1 + n_2 \cdot a_2 + n_3 \cdot a_3 + c_1 = 0$

• Liegt der Punkt in der Ebene?

Punkt in die Ebene einsetzen.

Gleichung nach Umformung: $0 = 0 \Rightarrow$ Punkt liegt in der

Ebene

• Abstand Punkt - Ebene

Punkt in die HNF einsetzen.

Punkt: A(1/2/0)

Ebene: $-1x_1 - 3x_2 + 1x_3 + 7 = 0$

 $-1 \cdot 1 - 3 \cdot 2 + 1 \cdot 0 + 7 = 0$

0 = 0

Punkt liegt in der Ebene

Punkt: A(2/-4/3)

Ebene: $-1x_1 - 3x_2 + 1x_3 + 7 = 0$

 $-1 \cdot 2 - 3 \cdot (-4) + 1 \cdot 3 + 7 = 0$

20 = 0

Punkt liegt nicht in der Ebene

Abstand des Punktes von der Ebene

Koordinatenform in Hessesche Normalenform HNF

 $-1x_1 - 3x_2 + 1x_3 + 7 = 0$

$$\vec{n} = \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix}$$

Länge des Normalenvektors:

 $|\vec{n}| = \sqrt{n_1^2 + n_2^2 + n_3^2}$

 $|\vec{n}| = \sqrt{(-1)^2 + (-3)^2 + 1^2}$

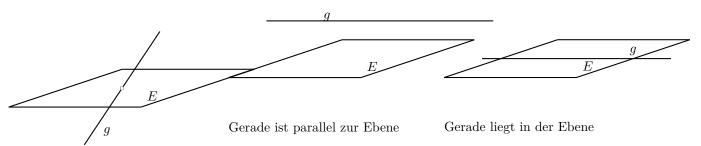
 $|\vec{n}| = 3,32$

HNF:

 $\frac{-1x_1 - 3x_2 + 1x_3 + 7}{-3.32} = 0$

Punkt in HNF:

 $d = \left| \frac{-1 \cdot 2 - 3 \cdot (-4) + 1 \cdot 3 + 7}{-3,32} \right|$


d = |-6,03|

d = 6,03

Interaktive Inhalte:

Analytische Geometrie Lagebeziehung

6.6.4 Gerade - Ebene (Koordinatenform)

Gerade schneidet Ebene

Gerade:
$$\vec{x} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Ebene: $n_1x_1 + n_2x_2 + n_3x_3 + c_1 = 0$

Gerade1 in Punktdarstellung

$$x_1 = a_1 + b_1 \lambda$$

$$x_2 = a_2 + b_2 \lambda$$

$$x_3 = a_3 + b_3 \lambda$$

$$x_1, x_2, x_3$$
 in die Ebenengleichung einsetzen
$$n_1(a_1+b_1\lambda)+n_2(a_2+b_2\lambda)+n_3(a_3+b_3\lambda)+c_1=0$$

Die Gleichung nach der Variablen auflösen.

- Schnittpunkt zwischen Gerade und Ebene Auflösung nach einer Variablen ist möglich. Variable in die Gerade einsetzen
- Geraden und Ebene sind parallel

Auflösung nach der Variablen ist nicht möglich. λ heben sich auf.

Gleichung nach Umformung: Konstante = 0

• Gerade liegt in der Ebene

Auflösung nach der Variablen ist nicht möglich. λ heben sich auf.

Gleichung nach Umformung:0 = 0


Interaktive Inhalte:

Gerade:
$$\vec{x} = \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 5 \\ 5 \end{pmatrix}$$

Ebene: $1x_1 - 2x_2 + 5x_3 + 10 = 0$
 $x_1 = 3 + 4\lambda$
 $x_2 = 5 + 5\lambda$
 $x_3 = 7 + 5\lambda$
 $1(3 + 4\lambda) - 2(5 + 5\lambda) + 5(7 + 5\lambda) + 10 = 0$
 $19\lambda + 38 = 0$

$$\lambda = \frac{-38}{19}$$

$$\lambda = -2$$

$$\vec{x} = \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix} - 2 \cdot \begin{pmatrix} 4 \\ 5 \\ 5 \end{pmatrix}$$
Schnittpunkt: $S(-5, -5, -3)$

Ebenen sind parallel

Ebenen schneiden sich

Parameterform - Koordinatenform

Parameterform - Ebene1

$$\vec{x} = \left(\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right) + \lambda \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right) + \sigma \left(\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array}\right)$$

Koordinatenform - Ebene2

$$n_1 x_1 + n_2 x_2 + n_3 x_3 + k_1 = 0$$

Ebene1 in Punktdarstellung

$$x_1 = a_1 + b_1 \lambda + c_1 \sigma$$

$$x_2 = a_2 + b_2 \lambda + c_2 \sigma$$

$$x_3 = a_3 + b_3\lambda + c_2\sigma$$

 x_1, x_2, x_3 in die Ebenengleichung einsetzen

$$n_1(a_1+b_1\lambda+c_1\sigma)+$$

$$n_2(a_2 + b_2\lambda + c_2\sigma) +$$

$$n_3(a_3 + b_3\lambda + c_2\sigma) + k1 = 0$$

Die Gleichung nach einer Variablen auflösen

• Schnittgerade zwischen den Ebenen

Auflösung nach einer Variablen ist möglich. λ oder σ in die Parameterform einsetzen

• Ebenen sind parallel

Auflösung nach einer Variablen ist nicht möglich. λ und σ heben sich auf

Gleichung nach Umformung: Konstante = 0

• Ebenen sind identisch

Auflösung nach einer Variablen ist nicht möglich. λ und σ heben sich auf

Gleichung nach Umformung: 0 = 0

Ebene:
$$\vec{x} = \begin{pmatrix} -2 \\ -4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \sigma \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix}$$
Ebene: $1x_1 + 1x_2 + 0x_3 + 0 = 0$

$$x_1 = -2 + 1\lambda + 0\sigma$$

$$x_2 = -4 + 2\lambda - 1\sigma$$

$$x_3 = 2 + 2\lambda - 1\sigma$$

$$1(-2 + 1\lambda + 0\sigma) + 1(-4 + 2\lambda - 1\sigma) + 0(2 + 2\lambda - 2\sigma) + 0 = 0$$

$$3\lambda - 1\sigma - 6 = 0$$

$$\sigma = \frac{-3\lambda + 6}{-1}$$

$$\sigma = 3\lambda - 6$$

$$\vec{x} = \begin{pmatrix} -2 \\ -4 \\ 2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + (3\lambda - 6) \cdot \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix}$$
Schnittgerade: $\vec{x} = \begin{pmatrix} -2 \\ 2 \\ 14 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ -4 \end{pmatrix}$

Analytische Geometrie Lagebeziehung

Parameterform - Parameterform

Eine Ebene in die Koordinatenform umrechnen. Danach die Lösung mit Parameterform - Koordinatenform berechnen.

Koordinatenform - Koordinatenform

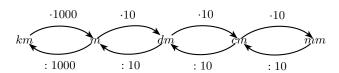
Eine Ebene in die Parameterform umrechnen. Danach die Lösung mit Parameterform - Koordinatenform berechnen.

Interaktive Inhalte:

7 Tabellen

7.1 Umrechnungen

 $Interaktive\ Umrechnungen$

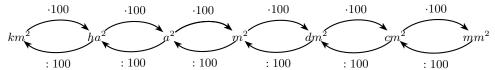

hier klicken

7.1.1 Zehnerpotenz

Eins	10^{0}	1	Eins	10^{0}	1
Zehn	10^{1}	10	Zehntel	10^{-1}	0, 1
Hundert	10^{2}	100	Hundertstel	10^{-2}	0,01
Tausend	10^{3}	1000	Tausendstel	10^{-3}	0,001
Zehntausend	10^{4}	10000	Zehntausendstel	10^{-4}	0,0001
Hunderttausend	10^{5}	100000	Hunderttausendstel	10^{-5}	0,00001
Million	10^{6}	1000000	Millionstel	10^{-6}	0,000001
	10^{7}	10000000		10^{-7}	0,0000001
	10^{8}	100000000		10^{-8}	0,00000001
Milliarde	10^{9}	1000000000		10^{-9}	0,000000001
	10^{10}	1000000000		10^{-10}	0,000000001
	10^{11}	10000000000		10^{-11}	0,0000000001
Billion	10^{12}	100000000000		10^{-12}	0,00000000001
	10^{13}	10000000000000		10^{-13}	0,0000000000001
	10^{14}	100000000000000		10^{-14}	0,00000000000001
Billiarde	10^{15}	1000000000000000		10^{-15}	0,000000000000001
	10^{16}	10000000000000000		10^{-16}	0,0000000000000001
	10^{17}	100000000000000000		10^{-17}	0,000000000000000001
Trillion	10^{18}	1000000000000000000		10^{-18}	0,0000000000000000001
	10^{19}	10000000000000000000		10^{-19}	0,0000000000000000000000000000000000000
	10^{20}	1000000000000000000000		10^{-20}	0,0000000000000000000000000000000000000
Trilliarde	10^{21}	10000000000000000000000		10^{-21}	0,0000000000000000000000000000000000000
	10^{22}	100000000000000000000000		10^{-22}	0,0000000000000000000000000000000000000
	10^{23}	100000000000000000000000000000000000000		10^{-23}	0,0000000000000000000000000000000000000
Quadrillion	10^{24}	100000000000000000000000000000000000000		10^{-24}	0,0000000000000000000000000000000000000

7.1.2 Längen

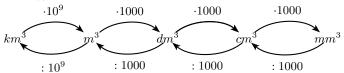
m - Meter dm - Dezimeter cm - Zentimeter mm - Millimeter μm - Mikrometer nm - Nanometer pm - Pikometer km - Kilometer



	m	dm	cm	mm	μm	nm	pm	km
m	1	10	100	1000	10^{6}	10^{9}	10^{12}	0,001
dm	0, 1	1	10	100	10^{5}	10 ⁸	10 ¹¹	0,0001
cm	0,01	0, 1	1	10	10^{4}	10^{7}	10^{10}	10^{-5}
mm	0,001	0,01	0, 1	1	1000	10^{6}	10^{9}	10^{-6}
μm	10^{-6}	10^{-5}	0,0001	0,001	1	1000	10^{6}	10^{-9}
nm	10^{-9}	10^{-8}	10^{-7}	10^{-6}	0,001	1	1000	10^{-12}
pm	10^{-12}	10^{-11}	10^{-10}	10^{-9}	10^{-6}	0,001	1	10^{-15}
km	1000	10^{4}	10^{5}	10^{6}	10^{9}	10^{12}	10^{15}	1

Tabellen Umrechnungen

7.1.3 Flächen


 m^2 - Quadratmeter $-dm^2$ - Quadratdezimeter $-cm^2$ - Quadratzentimeter $-mm^2$ - Quadratmillimeter -a - Ar -ha - Hektar $-km^2$ - Quadratkilometer

	m^2	dm^2	cm^2	mm^2	a	ha	km^2
m^2	1	100	10^{4}	10^{6}	0,01	0,0001	10^{-6}
dm^2	0,01	1	100	10^{4}	0,0001	10^{-6}	10^{-8}
cm^2	0,0001	0,01	1	100	10^{-6}	10^{-8}	10^{-10}
mm^2	10^{-6}	0,0001	0,01	1	10^{-8}	10^{-10}	10^{-12}
a	100	10^{4}	10^{6}	10^{8}	1	0,01	0,0001
ha	10^{4}	10^{6}	10^{8}	10^{10}	100	1	0,01
km^2	10^{6}	10^{8}	10^{10}	10^{12}	10^{4}	100	1

7.1.4 Volumen

 m^3 - Kubik
meter dm^3 - Kubik
dezimeter cm^3 - Kubik
zentimeter mm^3 - Kubik
milliliter l - Liter l - Hektoliter ml - Milliliter

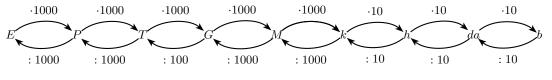
	m^3	dm^3	cm^3	mm^3	l	hl	ml
m^3	1	1000	10^{6}	10^{9}	1000	10	10^{6}
dm^3	0,001	1	1000	10^{6}	1	0,01	1000
cm^3	10^{-6}	0,001	1	1000	0,001	10^{-5}	1
mm^3	10^{-9}	10^{-6}	0,001	1	10^{-6}	10^{-8}	0,001
l	0,001	1	1000	10^{6}	1	0,01	1000
hl	0, 1	100	10^{5}	10 ⁸	100	1	10^{5}
ml	10^{-6}	0,001	1	1000	0,001	10^{-5}	1

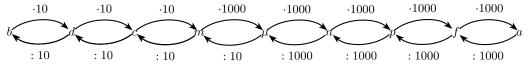
7.1.5 Zeit

 μs - Mikrosekunden s - Sekunden min - Minuten h - Stunden ms - Millisekunden minhms μs ns $\overline{10^{12}}$ 10^{9} 0,01667 0,0002778 1000 10^{6} 1 s $6 \cdot 10^{10}$ 60 0,01667 $6 \cdot 10^{4}$ $6 \cdot 10^7$ $6 \cdot 10^{13}$ min $3, 6 \cdot 10^{12}$ $3, 6 \cdot 10^{15}$ 3600 60 $3,6 \cdot 10^{6}$ $3,6 \cdot 10^9$ h $1,667 \cdot 10^{-1}$ 10^{6} 10^{9} 0,001 $2,778 \cdot 10^{-2}$ ms1000 10^{-6} $1,667 \cdot 10^{-}$ $2,778 \cdot 10^{-10}$ 0,001 1000 10^{6} μs 1 10^{-9} $1,667 \cdot 10^{-11}$ 10^{-6} $2,778 \cdot 10^{-13}$ 0,001 1000 ns 10^{-12} 10^{-9} 10^{-6} $1,667 \cdot 10^{-14}$ $2,778 \cdot 10^{-16}$ 0,001 1

ns - Nanosekunden ps - Pikosekunden

7.1.6 Winkel


 $^{\circ}$ - Grad (360 $^{\circ}$) rad - Radiant (Bogenmaß) mrad - Milliradiant ' - Winkelminute '' - Winkelsekunde gon - Neugrad


	0	,	"	gon	rad	mrad
0	1	60	3600	1,111	0,01745	$1,745 \cdot 10^{-5}$
′	0,01667	1	60	0,01852	0,0002909	$2,909 \cdot 10^{-7}$
"	0,0002778	0,01667	1	0,0003086	$4,848 \cdot 10^{-6}$	$4,848 \cdot 10^{-9}$
gon	0,9	54	3240	1	0,01571	$1,571 \cdot 10^{-5}$
rad	57, 3	3438	$2,063 \cdot 10^5$	63,66	1	0,001
mrad	$5,73 \cdot 10^4$	$3,438 \cdot 10^6$	$2,063 \cdot 10^8$	$6,366 \cdot 10^4$	1000	1

Tabellen Umrechnungen

7.1.7 Dezimale Einheiten

B- Bezugsgröße d- Dezi c- Zenti m- Milli μ - Mikro n- Nano p- Pico f- Femto a- Atto da- Deka h- Hekto k- Kilo M- Mega G- Giga T- Tera P- Peta E- Exa

B		d	c	m	μ	n	p	f	a	da	h	k	M	G	T	P	E
В	1	10	100	1000	10^{6}	109	10^{12}	10^{15}	10^{18}	0, 1	0,01	0,001	10-6	10-9	10^{-12}	10^{-15}	10-18
d	0, 1	1	10	100	10^{5}	108	10 ¹¹	10^{14}	10^{17}	0,01	0,001	0,0001	10-7	10-10	10-13	10-16	
c	0,01	0, 1	1	10	10^{4}	107	10 ¹⁰		10^{16}	0,001	0,0001	10-5	10-8	10-11	10-14	10-17	10-20
m	0,001	0,01	0, 1	1	1000	10^{6}	109	10 ¹²	10^{15}	0,0001	$^{10}^{-5}$	10-6	$_{10}^{-9}$	10^{-12}	10^{-15}	10^{-18}	10^{-21}
μ	10^{-6}	10^{-5}	0,0001	0,001	1	1000	10 ⁶	10 ⁹	10 ¹²	10^{-7}	10-8	10-9	10^{-12}			10^{-21}	10^{-24}
n	10-9	10-8	10-7	10-6	0,001	1	1000	10 ⁶	10 ⁹	10^{-10}	10^{-11}	10^{-12}		10^{-18}	10^{-21}	10^{-24}	10^{-27}
			10-10	10-9	10^{-6}	0,001	1	1000	10 ⁶	10^{-13}					10^{-24}	10^{-27}	10-30
		10^{-14}		10^{-12}		10^{-6}	0,001	1	1000	10^{-16}	10^{-17}	10^{-18}		10^{-24}	10^{-27}	10-30	10-33
a	10^{-18}	10^{-17}	10^{-16}	10^{-15}	10^{-12}	10-9	10-6	0,001	1	10^{-19}	10^{-20}	10^{-21}	10^{-24}				10-36
da	10	100	1000	10^{4}	107	10^{10}	10^{13}	10^{16}	10^{19}	1	0, 1	0,01	10-5	10-8	10-11	10^{-14}	
h	100	1000	10^{4}	10^{5}	108	10^{11}	10^{14}	10^{17}	10^{20}	10	1	0, 1	0,0001	10-7	10-10		
k	1000	10^{4}	10 ⁵	10^{6}	10 ⁹	10^{12}	10^{15}	10 ¹⁸	10^{21}	100	10	1	0,001	10^{-6}	10-9	10^{-12}	
M	10^{6}	107	108	109	10^{12}	10^{15}	10^{18}	10^{21}	10^{24}	10^{5}	10^{4}	1000	1	0,001	10-6	10-9	10-12
G	109	10^{10}	10 ¹¹	10^{12}	10^{15}	10^{18}	10 ²¹	10^{24}	10^{27}	108	107	106	1000	1	0,001	10-6	10-9
T	10^{12}	10 ¹³	10^{14}	10^{15}	10^{18}	10^{21}	10^{24}	10^{27}	1030	10^{11}	1010	109	10^{6}	1000	1	0,001	10-6
P	10^{15}	10 ¹⁶	10^{17}	10 ¹⁸	10^{21}	10^{24}	10 ²⁷	1030	1033	10^{14}	1013	10 ¹²	109	106	1000	1	0,001
E	10^{18}	10^{19}	10^{20}	10^{21}	10^{24}	10^{27}	10^{30}	1033	10^{36}	10^{17}	10^{16}	10 ¹⁵	10^{12}	10 ⁹	10^{6}	1000	1

236

Tabellen Primzahlen

7.2 Primzahlen

1.4	T 11	IIIZa												
2	3	5	7	11	13	17	19	23	29	31	37	41	43	47
53	59	61	67	71	73	79	83	89	97	101	103	107	109	113
127	131	137	139	149	151	157	163	167	173	179	181	191	193	197
199	211	223	227	229	233	239	241	251	257	263	269	271	277	281
283	293	307	311	313	317	331	337	347	349	353	359	367	373	379
383	389	397	401	409	419	421	431	433	439	443	449	457	461	463
467	479	487	491	499	503	509	521	523	541	547	557	563	569	571
577	587	593	599	601	607	613	617	619	631	641	643	647	653	659
661	673	677	683	691	701	709	719	727	733	739	743	751	757	761
769	773	787	797	809	811	821	823	827	829	839	853	857	859	863
877	881	883	887	907	911	919	929	937	941	947	953	967	971	977
983	991	997	1009	1013	1019	1021	1031	1033	1039	1049	1051	1061	1063	1069
1087	1091	1093	1097	1103	1109	1117	1123	1129	1151	1153	1163	1171	1181	1187
1193	1201	1213	1217	1223	1229	1231	1237	1249	1259	1277	1279	1283	1289	1291
1297	1301	1303	1307	1319	1321	1327	1361	1367	1373	1381	1399	1409	1423	1427
1429	1433	1439	1447	1451	1453	1459	1471	1481	1483	1487	1489	1493	1499	1511
1523	1531	1543	1549	1553	1559	1567	1571	1579	1583	1597	1601	1607	1609	1613
1619	1621	1627	1637	1657	1663	1667	1669	1693	1697	1699	1709	1721	1723	1733
1741	1747	1753	1759	1777	1783	1787	1789	1801	1811	1823	1831	1847	1861	1867
1871	1873	1877	1879	1889	1901	1907	1913	1931	1933	1949	1951	1973	1979	1987
1993	1997	1999	2003	2011	2017	2027	2029	2039	2053	2063	2069	2081	2083	2087
2089	2099	2111	2113	2129	2131	2137	2141	2143	2153	2161	2179	2203	2207	2213
2221	2237	2239	2243	2251	2267	2269	2273	2281	2287	2293	2297	2309	2311	2333
2339	2341	2347	2351	2357	2371	2377	2381	2383	2389	2393	2399	2411	2417	2423
2437	2441	2447	2459	2467	2473	2477	2503	2521	2531	2539	2543	2549	2551	2557
2579	2591	2593	2609	2617	2621	2633	2647	2657	2659	2663	2671	2677	2683	2687
2689	2693	2699	2707	2711	2713	2719	2729	2731	2741	2749	2753	2767	2777	2789
2791	2797	2801	2803	2819	2833	2837	2843	2851	2857	2861	2879	2887	2897	2903
2909	2917	2927	2939	2953	2957	2963	2969	2971	2999	3001	3011	3019	3023	3037
3041	3049	3061	3067	3079	3083	3089	3109	3119	3121	3137	3163	3167	3169	3181
3187	3191	3203	3209	3217	3221	3229	3251	3253	3257	3259	3271	3299	3301	3307
3313	3319	3323	3329	3331	3343	3347	3359	3361	3371	3373	3389	3391	3407	3413
3433	3449	3457	3461	3463	3467	3469	3491	3499	3511	3517	3527	3529	3533	3539
3541	3547	3557	3559	3571	3581	3583	3593	3607	3613	3617	3623	3631	3637	3643
3659	3671	3673	3677	3691	3697	3701	3709	3719	3727	3733	3739	3761	3767	3769
3779	3793	3797	3803	3821	3823	3833	3847	3851	3853	3863	3877	3881	3889	3907
3911	3917	3919	3923	3929	3931	3943	3947	3967	3989	4001	4003	4007	4013	4019
4021	4027	4049	4051	4057	4073	4079	4091	4093	4099	4111	4127	4129	4133	4139
4153	4157	4159	4177	4201	4211	4217	4219	4229	4231	4241	4243	4253	4259	4261
4271	4273	4283	4289	4297	4327	4337	4339	4349	4357	4363	4373	4391	4397	4409
4421	4423	4441	4447	4451	4457	4463	4481	4483	4493	4507	4513	4517	4519	4523
4547	4549	4561	4567	4583	4591	4597	4603	4621	4637	4639	4643	4649	4651	4657
4663	4673	4679	4691	4703	4721	4723	4729	4733	4751	4759	4783	4787	4789	4793
4799	4801	4813	4817	4831	4861	4871	4877	4889	4903	4909	4919	4931	4933	4937
4943	4951	4957	4967	4969	4973	4987	4993	4999	5003	5009	5011	5021	5023	5039
5051	5059	5077	5081	5087	5099	5101	5107	5113	5119	5147	5153	5167	5171	5179
5189	5197	5209	5227	5231	5233	5237	5261	5273	5279	5281	5297	5303	5309	5323
5333	5347	5351	5381	5387	5393	5399	5407	5413	5417	5419	5431	5437	5441	5443
5449	5471	5477	5479	5483	5501	5503	5507	5519	5521	5527	5531	5557	5563	5569
5573	5581	5591	5623	5639	5641	5647	5651	5653	5657	5659	5669	5683	5689	5693
5701	5711	5717	5737	5741	5743	5749	5779	5783	5791	5801	5807	5813	5821	5827
5839	5843	5849	5851	5857	5861	5867	5869	5879	5881	5897	5903	5923	5927	5939
5953	5981	5987	6007	6011	6029	6037	6043	6047	6053	6067	6073	6079	6089	6091
6101	6113	6121	6131	6133	6143	6151	6163	6173	6197	6199	6203	6211	6217	6221
6229	6247	6257	6263	6269	6271	6277	6287	6299	6301	6311	6317	6323	6329	6337
6343	6353	6359	6361	6367	6373	6379	6389	6397	6421	6427	6449	6451	6469	6473
0010	0000	0000	0001	1 0001	0010	0010	0000	0001	U 121	,	0110	0 101	0.100	0210

Tabellen Griechisches Alphabet

6481	6491	6521	6529	6547	6551	6553	6563	6569	6571	6577	6581	6599	6607	6619
6637	6653	6659	6661	6673	6679	6689	6691	6701	6703	6709	6719	6733	6737	6761
6763	6779	6781	6791	6793	6803	6823	6827	6829	6833	6841	6857	6863	6869	6871
6883	6899	6907	6911	6917	6947	6949	6959	6961	6967	6971	6977	6983	6991	6997
7001	7013	7019	7027	7039	7043	7057	7069	7079	7103	7109	7121	7127	7129	7151
7159	7177	7187	7193	7207	7211	7213	7219	7229	7237	7243	7247	7253	7283	7297
7307	7309	7321	7331	7333	7349	7351	7369	7393	7411	7417	7433	7451	7457	7459
7477	7481	7487	7489	7499	7507	7517	7523	7529	7537	7541	7547	7549	7559	7561
7573	7577	7583	7589	7591	7603	7607	7621	7639	7643	7649	7669	7673	7681	7687
7691	7699	7703	7717	7723	7727	7741	7753	7757	7759	7789	7793	7817	7823	7829
7841	7853	7867	7873	7877	7879	7883	7901	7907	7919	7927	7933	7937	7949	7951
7963	7993	8009	8011	8017	8039	8053	8059	8069	8081	8087	8089	8093	8101	8111
8117	8123	8147	8161	8167	8171	8179	8191	8209	8219	8221	8231	8233	8237	8243
8263	8269	8273	8287	8291	8293	8297	8311	8317	8329	8353	8363	8369	8377	8387
8389	8419	8423	8429	8431	8443	8447	8461	8467	8501	8513	8521	8527	8537	8539
8543	8563	8573	8581	8597	8599	8609	8623	8627	8629	8641	8647	8663	8669	8677
8681	8689	8693	8699	8707	8713	8719	8731	8737	8741	8747	8753	8761	8779	8783
8803	8807	8819	8821	8831	8837	8839	8849	8861	8863	8867	8887	8893	8923	8929
8933	8941	8951	8963	8969	8971	8999	9001	9007	9011	9013	9029	9041	9043	9049
9059	9067	9091	9103	9109	9127	9133	9137	9151	9157	9161	9173	9181	9187	9199
9203	9209	9221	9227	9239	9241	9257	9277	9281	9283	9293	9311	9319	9323	9337
9341	9343	9349	9371	9377	9391	9397	9403	9413	9419	9421	9431	9433	9437	9439
9461	9463	9467	9473	9479	9491	9497	9511	9521	9533	9539	9547	9551	9587	9601
9613	9619	9623	9629	9631	9643	9649	9661	9677	9679	9689	9697	9719	9721	9733
9739	9743	9749	9767	9769	9781	9787	9791	9803	9811	9817	9829	9833	9839	9851
9857	9859	9871	9883	9887	9901	9907	9923	9929	9931	9941	9949	9967	9973	

7.3 Griechisches Alphabet

A	α	Alpha	N	ν	Nü
B	β	Beta	Ξ	ξ	Xi
Γ	γ	Gamma	O	0	Omikron
Δ	δ	Delta	Π	$\pi \omega$	Pi
E	$\epsilon \ \varepsilon$	Epsilon	P	ρο	Rho
Z	ζ	Zeta	\sum	$\sigma \varsigma$	Sigma
H	η	Eta	T	au	Tau
T	$\theta \vartheta$	Theta	Y	v	Ypsilon
I	ι	Iota	Φ	$\phi \varphi$	Phi
K	$\kappa \varkappa$	Kappa	X	χ	Chi
Λ	λ	Lambda	Ψ	ψ	Psi
M	μ	Mü	Ω	ω	Omega