Algebra-Lineare Algebra-Matrix

$Matrix$
1 2 3
Beispiel Nr: 02
$\begin{array}{l} \\ \text{ Gegeben:} \\ \begin{array}{c} Matrix A \\ \left[ \begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n}\\ a_{21} & a_{22} & \ldots & a_{2n}\\ \vdots & \vdots &\vdots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn}\\ \end{array} \right] \\ Matrix B \\ \left[ \begin{array}{cccc} b_{11} & b_{12} & \ldots & b_{1n}\\ b_{21} & b_{22} & \ldots & b_{2n}\\ \vdots & \vdots &\vdots & \vdots \\ b_{m1} & b_{m2} & \ldots & b_{mn}\\ \end{array} \right] \end{array} \\ \textbf{Aufgabe:}\\Addieren \\ \textbf{Rechnung:}\\ \small \left[ \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{array} \right] + \small \left[ \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{array} \right] = \\ \small \left[ \begin{array}{ccc} 1+1 & 2+2 & 3+3 \\ 4+4 & 5+5 & 6+6 \\ 7+7 & 8+8 & 9+9\end{array} \right] = \\ \small \left[ \begin{array}{ccc} 2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18 \\ \end{array} \right] \end{array}$