Algebra-Lineares Gleichungssystem-Additionsverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Beispiel Nr: 02
$\begin{array}{l}
\text{Gegeben:} \\
a1 \cdot x +b1 \cdot y =c1\\
a2 \cdot x +b2 \cdot y =c2 \\
\\ \text{Gesucht:} \\\text{x und y}
\\ \\ \textbf{Gegeben:} \\
\\
1 x +1 y =10\\
1 x -1 y = 4 \\
\\
\\ \\ \textbf{Rechnung:} \\\begin{array}{l|l}
\begin{array}{l}
\\I \qquad 1 x +1 y =10\\
II \qquad 1 x -1 y = 4 \\
I \qquad 1 x +1 y =10 \qquad / \cdot1\\
II \qquad 1 x -1 y = 4 \qquad / \cdot\left(-1\right)\\
I \qquad 1 x +1 y =10\\
II \qquad -1 x +1 y = -4 \\
\text{I + II}\\
I \qquad 1 x -1 x+1 y +1 y =10 -4\\
2 y = 6 \qquad /:2 \\
y = \frac{6}{2} \\
y=3 \\
\text{y in I}\\
I \qquad 1 x +1\cdot 3 =10 \\
1 x +3 =10 \qquad / -3 \\
1 x =10 -3 \\
1 x =7 \qquad / :1 \\
x = \frac{7}{1} \\
x=7 \\
L=\{7/3\}
\end{array} &
\begin{array}{l}
\\I \qquad 1 x +1 y =10\\
II \qquad 1 x -1 y = 4 \\
I \qquad 1 x +1 y =10 \qquad / \cdot\left(-1\right)\\
II \qquad 1 x -1 y = 4 \qquad / \cdot\left(-1\right)\\
I \qquad -1 x -1 y =-10\\
II \qquad -1 x +1 y = -4 \\
\text{I + II}\\
I \qquad -1 x -1 x-1 y +1 y =-10 -4\\
-2 x = -14 \qquad /:\left(-2\right) \\
x = \frac{-14}{-2} \\
x=7 \\
\text{x in I}\\
I \qquad 1 \cdot 7 +1y =10 \\
1 y +7 =10 \qquad / -7 \\
1 y =10 -7 \\
1 y =3 \qquad / :1 \\
y = \frac{3}{1} \\
y=3 \\
L=\{7/3\} \end{array}
\end{array}
\end{array}$