Algebra-Grundlagen-Potenzen
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Beispiel Nr: 03
$\begin{array}{l} {a^{m} \cdot a^{n}=a^{m+n}} \\
\dfrac{a^{m}}{a^{n}}=a^{m-n} \\
a^{n}\cdot b^{n}=({ab})^{n} \\
(a^{n})^{m}=a^{n\cdot m} \\ \\ \textbf{Gegeben:} \\ {a=2 \qquad b=4 \qquad m=4 \qquad n=2}\\ \\ \textbf{Rechnung:} \\
{2^{4} \cdot 2^{2}=2^{4+2}=2^{6}=64}\\
2^{4}:2^{2}=\dfrac{2^{4}}{2^{2}}=2^{4-2}=2^{2}=4\\
2^{2}\cdot 4^{2}=(2\cdot4)^{2}= 8^{2}={64} \\
(2^{2})^{4}=2^{2\cdot 4} = 2^{8}={256}
\end{array}$