Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 03
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
-\frac{2}{3}x^2+\frac{1}{6} =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l|l}
\begin{array}{l}
\text{Umformen}\\ \hline
-\frac{2}{3}x^2+\frac{1}{6} =0 \qquad /-\frac{1}{6} \\
-\frac{2}{3}x^2= -\frac{1}{6} \qquad /:\left(-\frac{2}{3}\right) \\
x^2=\displaystyle\frac{-\frac{1}{6}}{-\frac{2}{3}} \\
x=\pm\sqrt{\frac{1}{4}} \\
x_1=\frac{1}{2} \qquad x_2=-\frac{1}{2}
\end{array}&
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
-\frac{2}{3}x^{2}+0x+\frac{1}{6} =0
\\
x_{1/2}=\displaystyle\frac{-0 \pm\sqrt{0^{2}-4\cdot \left(-\frac{2}{3}\right) \cdot \frac{1}{6}}}{2\cdot\left(-\frac{2}{3}\right)}
\\
x_{1/2}=\displaystyle \frac{-0 \pm\sqrt{\frac{4}{9}}}{-1\frac{1}{3}}
\\
x_{1/2}=\displaystyle \frac{0 \pm\frac{2}{3}}{-1\frac{1}{3}}
\\
x_{1}=\displaystyle \frac{0 +\frac{2}{3}}{-1\frac{1}{3}} \qquad x_{2}=\displaystyle \frac{0 -\frac{2}{3}}{-1\frac{1}{3}}
\\
x_{1}=-\frac{1}{2} \qquad x_{2}=\frac{1}{2}
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
-\frac{2}{3}x^{2}+0x+\frac{1}{6} =0 \qquad /:-\frac{2}{3}
\\
x^{2}+0x-\frac{1}{4} =0
\\
x_{1/2}=\displaystyle -\frac{0}{2}\pm\sqrt{\left(\frac{0}{2}\right)^2- \left(-\frac{1}{4}\right)}
\\
x_{1/2}=\displaystyle 0\pm\sqrt{\frac{1}{4}}
\\
x_{1/2}=\displaystyle 0\pm\frac{1}{2}
\\
x_{1}=\frac{1}{2} \qquad x_{2}=-\frac{1}{2}
\end{array}\\ \end{array} \end{array}$