Algebra-Grundlagen-Logarithmen
1
2
3
4
5
6
7
Beispiel Nr: 05
$\begin{array}{l} c=\log_{b} a \Leftrightarrow b^{c}=a \\
\log_c a+\log_c b = \log_c (a \cdot b) \\
\log_c a-\log_c b =\log _c\frac{a}{b} \\
log_c a^n=n\log_c a \\ \\ \textbf{Gegeben:} \\ {a=2 \qquad b=4 \qquad c=2 \qquad n=4}\\ \\ \textbf{Rechnung:} \\
\log_{4} 2 =\frac{1}{2} \Leftrightarrow 4^{\frac{1}{2}}=2 \\
\log_{2} 2+\log_{2}4 = \log_{2}(2 \cdot 4)= \log_{2}(2 \cdot 4)=3 \\
\log_{2} 2-\log_{2}4 =\log_{2}\frac{2}{4}= -1\\
\log_{2}2^4=4\log_{2}2 = 4\\
\log_{4} 2=\dfrac{\log_{2}2}{\log_{2}4}=\frac{1}{2}
\end{array}$