Algebra-Grundlagen-Potenzen
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Beispiel Nr: 05
$\begin{array}{l} {a^{m} \cdot a^{n}=a^{m+n}} \\
\dfrac{a^{m}}{a^{n}}=a^{m-n} \\
a^{n}\cdot b^{n}=({ab})^{n} \\
(a^{n})^{m}=a^{n\cdot m} \\ \\ \textbf{Gegeben:} \\ {a=-2 \qquad b=-3 \qquad m=2 \qquad n=1}\\ \\ \textbf{Rechnung:} \\
{\left(-2\right)^{2} \cdot \left(-2\right)^{1}=\left(-2\right)^{2+1}=\left(-2\right)^{3}=-8}\\
\left(-2\right)^{2}:\left(-2\right)^{1}=\dfrac{\left(-2\right)^{2}}{\left(-2\right)^{1}}=\left(-2\right)^{2-1}=\left(-2\right)^{1}=-2\\
\left(-2\right)^{1}\cdot \left(-3\right)^{1}=(\left(-2\right)\cdot\left(-3\right))^{1}= 6^{1}={6} \\
(\left(-2\right)^{1})^{2}=\left(-2\right)^{1\cdot 2} = \left(-2\right)^{2}={4}
\end{array}$