Algebra-Grundlagen-Potenzen
     
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
            
        
            
       
 
        
    
                Beispiel Nr: 06
            
        
           $\begin{array}{l} {a^{m} \cdot a^{n}=a^{m+n}} \\  
    \dfrac{a^{m}}{a^{n}}=a^{m-n} \\
    a^{n}\cdot b^{n}=({ab})^{n} \\
    (a^{n})^{m}=a^{n\cdot m} \\ \\ \textbf{Gegeben:} \\ {a=-2 \qquad b=-4 \qquad m=2 \qquad n=2}\\ \\ \textbf{Rechnung:} \\
	{\left(-2\right)^{2} \cdot \left(-2\right)^{2}=\left(-2\right)^{2+2}=\left(-2\right)^{4}=16}\\
	 \left(-2\right)^{2}:\left(-2\right)^{2}=\dfrac{\left(-2\right)^{2}}{\left(-2\right)^{2}}=\left(-2\right)^{2-2}=\left(-2\right)^{0}=1\\
	  \left(-2\right)^{2}\cdot  \left(-4\right)^{2}=(\left(-2\right)\cdot\left(-4\right))^{2}= 8^{2}={64}  \\
	  (\left(-2\right)^{2})^{2}=\left(-2\right)^{2\cdot 2} = \left(-2\right)^{4}={16} 
	        \end{array}$