Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 06
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
-2x^2+4 =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l|l}
\begin{array}{l}
\text{Umformen}\\ \hline
-2x^2+4 =0 \qquad /-4 \\
-2x^2= -4 \qquad /:\left(-2\right) \\
x^2=\displaystyle\frac{-4}{-2} \\
x=\pm\sqrt{2} \\
x_1=1,41 \qquad x_2=-1,41
\end{array}&
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
-2x^{2}+0x+4 =0
\\
x_{1/2}=\displaystyle\frac{-0 \pm\sqrt{0^{2}-4\cdot \left(-2\right) \cdot 4}}{2\cdot\left(-2\right)}
\\
x_{1/2}=\displaystyle \frac{-0 \pm\sqrt{32}}{-4}
\\
x_{1/2}=\displaystyle \frac{0 \pm5,66}{-4}
\\
x_{1}=\displaystyle \frac{0 +5,66}{-4} \qquad x_{2}=\displaystyle \frac{0 -5,66}{-4}
\\
x_{1}=-1,41 \qquad x_{2}=1,41
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
-2x^{2}+0x+4 =0 \qquad /:-2
\\
x^{2}+0x-2 =0
\\
x_{1/2}=\displaystyle -\frac{0}{2}\pm\sqrt{\left(\frac{0}{2}\right)^2- \left(-2\right)}
\\
x_{1/2}=\displaystyle 0\pm\sqrt{2}
\\
x_{1/2}=\displaystyle 0\pm1,41
\\
x_{1}=1,41 \qquad x_{2}=-1,41
\end{array}\\ \end{array} \end{array}$