Analytische Geometrie-Lagebeziehung-Gerade - Gerade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Beispiel Nr: 08
$\begin{array}{l} \text{Gegeben:}
\text{Gerade 1: }
\vec{x} =\left(
\begin{array}{c}
a1 \\
a2 \\
a3 \\
\end{array}
\right) + \lambda
\left(
\begin{array}{c}
b1 \\
b2 \\
b3 \\
\end{array}
\right) \\
\text{Gerade 2: }
\vec{x} =\left(
\begin{array}{c}
c1 \\
c2 \\
c3 \\
\end{array}
\right) + \sigma
\left(
\begin{array}{c}
d1 \\
d2 \\
d3 \\
\end{array}
\right) \\
\text{Gesucht:}
\text{Die Lage der Geraden zueinander.}
\\ \\ \textbf{Gegeben:} \\
\text{Gerade 1: }
\vec{x} =\left(
\begin{array}{c}
1 \\
2 \\
7 \\
\end{array}
\right) + \lambda
\left(
\begin{array}{c}
2 \\
6 \\
8 \\
\end{array}
\right) \\
\text{Gerade 2: }
\vec{x} =\left(
\begin{array}{c}
9 \\
7 \\
8 \\
\end{array}
\right) + \sigma
\left(
\begin{array}{c}
5 \\
3 \\
3 \\
\end{array}
\right) \\
\\ \\ \textbf{Rechnung:} \\
\text{Gerade 1: }
\vec{x} =\left(
\begin{array}{c}
1 \\
2 \\
7 \\
\end{array}
\right) + \lambda
\left(
\begin{array}{c}
2 \\
6 \\
8 \\
\end{array}
\right) \\
\text{Gerade 2: }
\vec{x} =\left(
\begin{array}{c}
9 \\
7 \\
8 \\
\end{array}
\right) + \sigma
\left(
\begin{array}{c}
5 \\
3 \\
3 \\
\end{array}
\right) \\
\text{Richtungsvektoren: } \\
\left(
\begin{array}{c}
2 \\
6 \\
8 \\
\end{array}
\right) =k \cdot
\left(
\begin{array}{c}
5 \\
3 \\
3 \\
\end{array}
\right) \\
\begin{array}{cccc}
2&=&+5 k& \quad /:5 \quad \Rightarrow k=\frac{2}{5} \\
6&=&+3 k & \quad /:3 \quad \Rightarrow k=2 \\
8&=&+3 k & \quad /:3 \quad \Rightarrow k=2\frac{2}{3} \\
\end{array} \\
\\ \Rightarrow \text{Geraden sind nicht parallel} \\ \left(
\begin{array}{c}
1 \\
2 \\
7 \\
\end{array}
\right) + \lambda
\left(
\begin{array}{c}
2 \\
6 \\
8 \\
\end{array}
\right) =
\left(
\begin{array}{c}
9 \\
7 \\
8 \\
\end{array}
\right) + \sigma
\left(
\begin{array}{c}
5 \\
3 \\
3 \\
\end{array}
\right) \\
\begin{array}{cccccc}
1& +2\lambda &=& 9& +5\sigma& \quad /-1 \quad /-5 \sigma\\
2& +6\lambda &=& 7& +3 \sigma& \quad /-2 \quad /-3 \sigma\\
7& +8\lambda &=& 8& +3 \sigma& \quad /-7 \quad /-3 \sigma\\
\end{array} \\
\\I \qquad 2 \lambda -5 \sigma =8\\
II \qquad 6 \lambda -3 \sigma = 5 \\
III \qquad 8 \lambda +3 \sigma = 1 \\ \\
\text{Aus 2 Gleichungen }\lambda \text{ und } \sigma \text{ berechnen } \\
I \qquad 2 \lambda -5 \sigma =8 \qquad / \cdot3\\
II \qquad 6 \lambda -3 \sigma = 5 \qquad / \cdot\left(-1\right)\\
I \qquad 6 \lambda -15 \sigma =24\\
II \qquad -6 \lambda +3 \sigma = -5 \\
\text{I + II}\\
I \qquad 6 \lambda -6 \lambda-15 \sigma +3 \sigma =24 -5\\ -12 \sigma = 19 \qquad /:\left(-12\right) \\
\sigma = \frac{19}{-12} \\
\sigma=-1\frac{7}{12} \\
\sigma \text{ in I}\\
I \qquad 6 \lambda -15 \cdot \left(-1\frac{7}{12}\right) =24 \\
6 \lambda +23\frac{3}{4} =24 \qquad / -23\frac{3}{4} \\
6 \lambda =24 -23\frac{3}{4} \\
6 \lambda =\frac{1}{4} \qquad / :6 \\
\lambda = \frac{\frac{1}{4}}{6} \\
\lambda=\frac{1}{24} \\
\lambda \text{ und } \sigma \text{ in die verbleibende Gleichung einsetzen} \\
III \quad 7+\frac{1}{24}\cdot8=8-1\frac{7}{12}\cdot3 \\
7\frac{1}{3}=3\frac{1}{4} \\ \text{Geraden sind windschief} \\
\end{array}$