Algebra-Lineare Algebra-Lineare Gleichungssysteme und Gauß-Algorithmus
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
$n-Gleichungen$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Beispiel Nr: 08
$\begin{array}{l} \text{Gegeben:} \\
a1 \cdot x + b1\cdot y + c1\cdot z=d1\\
a2\cdot x + b2\cdot y + c2\cdot z=d2\\
a3\cdot x + b3\cdot y + c3\cdot z=d3\\
\\ \text{Gesucht:} \\\text{x,y,z}
\\ \\ \textbf{Gegeben:} \\
2 x +3 + -4 z=16\\
4 x +9 y + -1 z=58\\
1 x +6 y + 2 z=34\\
\\ \\ \textbf{Rechnung:} \\\small \begin{array}{l} 2x+3y-4z=16 \\
4x+9y -z=58 \\
x+6y+2z=34 \\
\\
\end{array} \qquad
\small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 3 & -4 & 16 \\
4 & 9 & -1 & 58 \\
1 & 6 & 2 & 34 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}2=\text{Zeile}2\text{-Zeile}1\cdot \frac{4}{2}\\z2s1=4-2\cdot \frac{4}{2}=0 \\ z2s2=9-3\cdot \frac{4}{2}=3 \\ z2s3=-1-(-4)\cdot \frac{4}{2}=7 \\ z2s4=58-16\cdot \frac{4}{2}=26 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 3 & -4 & 16 \\
0 & 3 & 7 & 26 \\
1 & 6 & 2 & 34 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}3=\text{Zeile}3\text{-Zeile}1\cdot \frac{1}{2}\\z3s1=1-2\cdot \frac{1}{2}=0 \\ z3s2=6-3\cdot \frac{1}{2}=4\frac{1}{2} \\ z3s3=2-(-4)\cdot \frac{1}{2}=4 \\ z3s4=34-16\cdot \frac{1}{2}=26 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 3 & -4 & 16 \\
0 & 3 & 7 & 26 \\
0 & 4\frac{1}{2} & 4 & 26 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}1=\text{Zeile}1\text{-Zeile}2\cdot \frac{3}{3}\\z1s2=3-3\cdot \frac{3}{3}=0 \\ z1s3=-4-7\cdot \frac{3}{3}=-11 \\ z1s4=16-26\cdot \frac{3}{3}=-10 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 0 & -11 & -10 \\
0 & 3 & 7 & 26 \\
0 & 4\frac{1}{2} & 4 & 26 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}3=\text{Zeile}3\text{-Zeile}2\cdot \frac{4\frac{1}{2}}{3}\\z3s2=4\frac{1}{2}-3\cdot \frac{4\frac{1}{2}}{3}=0 \\ z3s3=4-7\cdot \frac{4\frac{1}{2}}{3}=-6\frac{1}{2} \\ z3s4=26-26\cdot \frac{4\frac{1}{2}}{3}=-13 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 0 & -11 & -10 \\
0 & 3 & 7 & 26 \\
0 & 0 & -6\frac{1}{2} & -13 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}1=\text{Zeile}1\text{-Zeile}3\cdot \frac{-11}{-6\frac{1}{2}}\\z1s3=-11-(-6\frac{1}{2})\cdot \frac{-11}{-6\frac{1}{2}}=0 \\ z1s4=-10-(-13)\cdot \frac{-11}{-6\frac{1}{2}}=12 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 0 & 0 & 12 \\
0 & 3 & 7 & 26 \\
0 & 0 & -6\frac{1}{2} & -13 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}2=\text{Zeile}2\text{-Zeile}3\cdot \frac{7}{-6\frac{1}{2}}\\z2s3=7-(-6\frac{1}{2})\cdot \frac{7}{-6\frac{1}{2}}=0 \\ z2s4=26-(-13)\cdot \frac{7}{-6\frac{1}{2}}=12 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 0 & 0 & 12 \\
0 & 3 & 0 & 12 \\
0 & 0 & -6\frac{1}{2} & -13 \\
\end{array} \\ \\
x=\frac{12}{2}=6\\y=\frac{12}{3}=4\\z=\frac{-13}{-6\frac{1}{2}}=2\\L=\{6/4/2\} \end{array}$