Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 09
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
-2x^2-8x =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l|l}
\begin{array}{l}
\text{x-Ausklammern}\\ \hline
-2x^{2}-8x =0 \\
x(-2x -8)=0 \\
\\ -2 x-8 =0 \qquad /+8 \\
-2 x= 8 \qquad /:\left(-2\right) \\
x=\displaystyle\frac{8}{-2}\\
x_1=0\\
x_2=-4
\end{array}&
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
-2x^{2}-8x+0 =0
\\
x_{1/2}=\displaystyle\frac{+8 \pm\sqrt{\left(-8\right)^{2}-4\cdot \left(-2\right) \cdot 0}}{2\cdot\left(-2\right)}
\\
x_{1/2}=\displaystyle \frac{+8 \pm\sqrt{64}}{-4}
\\
x_{1/2}=\displaystyle \frac{8 \pm8}{-4}
\\
x_{1}=\displaystyle \frac{8 +8}{-4} \qquad x_{2}=\displaystyle \frac{8 -8}{-4}
\\
x_{1}=-4 \qquad x_{2}=0
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
-2x^{2}-8x+0 =0 \qquad /:-2
\\
x^{2}+4x+0 =0
\\
x_{1/2}=\displaystyle -\frac{4}{2}\pm\sqrt{\left(\frac{4}{2}\right)^2- 0}
\\
x_{1/2}=\displaystyle -2\pm\sqrt{4}
\\
x_{1/2}=\displaystyle -2\pm2
\\
x_{1}=0 \qquad x_{2}=-4
\end{array}\\ \end{array} \end{array}$