Algebra-Lineares Gleichungssystem-Additionsverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Beispiel Nr: 10
$\begin{array}{l}
\text{Gegeben:} \\
a1 \cdot x +b1 \cdot y =c1\\
a2 \cdot x +b2 \cdot y =c2 \\
\\ \text{Gesucht:} \\\text{x und y}
\\ \\ \textbf{Gegeben:} \\
\\
-1 x +1 y =3\\
\frac{1}{2} x -4 y = 5 \\
\\
\\ \\ \textbf{Rechnung:} \\\begin{array}{l|l}
\begin{array}{l}
\\I \qquad -1 x +1 y =3\\
II \qquad \frac{1}{2} x -4 y = 5 \\
I \qquad -1 x +1 y =3 \qquad / \cdot\left(-\frac{1}{2}\right)\\
II \qquad \frac{1}{2} x -4 y = 5 \qquad / \cdot\left(-1\right)\\
I \qquad \frac{1}{2} x -\frac{1}{2} y =-1\frac{1}{2}\\
II \qquad -\frac{1}{2} x +4 y = -5 \\
\text{I + II}\\
I \qquad \frac{1}{2} x -\frac{1}{2} x-\frac{1}{2} y +4 y =-1\frac{1}{2} -5\\
3\frac{1}{2} y = -6\frac{1}{2} \qquad /:3\frac{1}{2} \\
y = \frac{-6\frac{1}{2}}{3\frac{1}{2}} \\
y=-1\frac{6}{7} \\
\text{y in I}\\
I \qquad -1 x +1\cdot \left(-1\frac{6}{7}\right) =3 \\
-1 x -1\frac{6}{7} =3 \qquad / +1\frac{6}{7} \\
-1 x =3 +1\frac{6}{7} \\
-1 x =4\frac{6}{7} \qquad / :\left(-1\right) \\
x = \frac{4\frac{6}{7}}{-1} \\
x=-4\frac{6}{7} \\
L=\{-4\frac{6}{7}/-1\frac{6}{7}\}
\end{array} &
\begin{array}{l}
\\I \qquad -1 x +1 y =3\\
II \qquad \frac{1}{2} x -4 y = 5 \\
I \qquad -1 x +1 y =3 \qquad / \cdot\left(-4\right)\\
II \qquad \frac{1}{2} x -4 y = 5 \qquad / \cdot\left(-1\right)\\
I \qquad 4 x -4 y =-12\\
II \qquad -\frac{1}{2} x +4 y = -5 \\
\text{I + II}\\
I \qquad 4 x -\frac{1}{2} x-4 y +4 y =-12 -5\\
3\frac{1}{2} x = -17 \qquad /:3\frac{1}{2} \\
x = \frac{-17}{3\frac{1}{2}} \\
x=-4\frac{6}{7} \\
\text{x in I}\\
I \qquad -1 \cdot \left(-4\frac{6}{7}\right) +1y =3 \\
1 y +4\frac{6}{7} =3 \qquad / -4\frac{6}{7} \\
1 y =3 -4\frac{6}{7} \\
1 y =-1\frac{6}{7} \qquad / :1 \\
y = \frac{-1\frac{6}{7}}{1} \\
y=-1\frac{6}{7} \\
L=\{-4\frac{6}{7}/-1\frac{6}{7}\} \end{array}
\end{array}
\end{array}$