Algebra-Lineares Gleichungssystem-Additionsverfahren (2)
     
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
            
        
            
       
 
        
    
                Beispiel Nr: 10
            
        
           $\begin{array}{l} 
      \text{Gegeben:} \\
      a1  \cdot x +b1 \cdot y =c1\\
      a2 \cdot x +b2 \cdot y =c2 \\
      \\ \text{Gesucht:} \\\text{x und y}
     \\ \\ \textbf{Gegeben:} \\ 
      \\
      -1 x +1  y =3\\
      \frac{1}{2} x -4  y = 5 \\
      \\
    \\ \\ \textbf{Rechnung:} \\\begin{array}{l|l}
\begin{array}{l}
      \\I \qquad -1 x +1  y =3\\
      II \qquad \frac{1}{2} x -4  y = 5 \\
      I \qquad -1 x +1  y =3  \qquad /  \cdot\left(-\frac{1}{2}\right)\\
      II \qquad \frac{1}{2} x -4  y = 5 \qquad /  \cdot\left(-1\right)\\
      I \qquad \frac{1}{2} x -\frac{1}{2}  y =-1\frac{1}{2}\\
      II \qquad -\frac{1}{2} x +4  y = -5 \\
      \text{I + II}\\
      I \qquad \frac{1}{2} x -\frac{1}{2} x-\frac{1}{2}  y +4  y =-1\frac{1}{2} -5\\
    
      3\frac{1}{2}  y = -6\frac{1}{2} \qquad /:3\frac{1}{2} \\
      y = \frac{-6\frac{1}{2}}{3\frac{1}{2}} \\
      y=-1\frac{6}{7} \\
      \text{y in I}\\
      I \qquad -1 x +1\cdot \left(-1\frac{6}{7}\right) =3 \\
      -1 x -1\frac{6}{7} =3 \qquad / +1\frac{6}{7} \\
      -1 x  =3 +1\frac{6}{7} \\
      -1 x  =4\frac{6}{7} \qquad / :\left(-1\right) \\
      x  = \frac{4\frac{6}{7}}{-1} \\
      x=-4\frac{6}{7}     \\
      L=\{-4\frac{6}{7}/-1\frac{6}{7}\}
    \end{array} & 
\begin{array}{l}
      \\I \qquad -1 x +1  y =3\\
      II \qquad \frac{1}{2} x -4  y = 5 \\
      I \qquad -1 x +1  y =3  \qquad /  \cdot\left(-4\right)\\
      II \qquad \frac{1}{2} x -4  y = 5 \qquad /  \cdot\left(-1\right)\\
      I \qquad 4 x -4  y =-12\\
      II \qquad -\frac{1}{2} x +4  y = -5 \\
      \text{I + II}\\
      I \qquad 4 x -\frac{1}{2} x-4  y +4  y =-12 -5\\
    
      3\frac{1}{2}  x = -17 \qquad /:3\frac{1}{2} \\
      x = \frac{-17}{3\frac{1}{2}} \\
      x=-4\frac{6}{7} \\
      \text{x in I}\\
      I \qquad -1 \cdot \left(-4\frac{6}{7}\right) +1y =3 \\
      1 y +4\frac{6}{7} =3 \qquad / -4\frac{6}{7} \\
      1 y  =3 -4\frac{6}{7} \\
      1 y  =-1\frac{6}{7} \qquad / :1 \\
      y  = \frac{-1\frac{6}{7}}{1} \\
      y=-1\frac{6}{7}     \\
      L=\{-4\frac{6}{7}/-1\frac{6}{7}\}    \end{array} 
\end{array} 
  \end{array}$