Algebra-Lineares Gleichungssystem-Determinantenverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Beispiel Nr: 10
$\begin{array}{l}
D_h=\begin{array}{|cc|}a1\ & b1 \\ a2&b2 \\ \end{array}=
a1 \cdot b2 -b1 \cdot a2 \\
D_x=\begin{array}{|cc|}c1\ & b1 \\ c2&b2 \\ \end{array}=
c1 \cdot b2 -b1 \cdot c2 \\
D_y=\begin{array}{|cc|}a1\ & c1 \\ a2&c2 \\ \end{array}=
a1 \cdot c2 -c1 \cdot a2\\
x=\frac{D_x}{D_h} \\
y=\frac{D_y}{D_h}
\\ \\ \textbf{Gegeben:} \\
\\
-1 x +1 y =3\\
\frac{1}{2} x -4 y = 5 \\
\\
\\ \\ \textbf{Rechnung:} \\
D_h=\begin{array}{|cc|}-1\ & 1 \\ \frac{1}{2}&-4 \\ \end{array}=
-1 \cdot \left(-4\right) -1 \cdot \frac{1}{2}=3\frac{1}{2} \\
D_x=\begin{array}{|cc|}3\ & 1 \\ 5&-4 \\ \end{array}=
3 \cdot \left(-4\right) -1 \cdot 5=-17 \\
D_y=\begin{array}{|cc|}-1\ & 3 \\ \frac{1}{2}&5 \\ \end{array}=
-1 \cdot 5 -3 \cdot \frac{1}{2}=-6\frac{1}{2} \\
\
x=\frac{-17}{3\frac{1}{2}} \\
x=-4\frac{6}{7} \\
y=\frac{-6\frac{1}{2}}{3\frac{1}{2}} \\
y=-1\frac{6}{7} \\
L=\{-4\frac{6}{7}/-1\frac{6}{7}\}\\
\,
\end{array}$