Algebra-Gleichungen-Quadratische Gleichung
 $   ax^{2}+bx+c=0  $ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
            
        
                Beispiel Nr: 10
            
        
           $\begin{array}{l}  \text{Gegeben:} ax^{2}+bx+c=0  
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung}    \\
     
    \\    ax^{2}+bx+c=0  \\ \textbf{Gegeben:} \\ 
       x^2-1x =0
    \\ \\ \textbf{Rechnung:} \\
 \begin{array}{l|l|l|l}
\begin{array}{l} 
 \text{x-Ausklammern}\\ \hline
      1x^{2}-1x =0 \\
      x(1x -1)=0 \\
      \\ 1 x-1 =0 \qquad  /+1 \\
      1 x= 1 \qquad /:1 \\
      x=\displaystyle\frac{1}{1}\\
      x_1=0\\
      x_2=1
    
 \end{array}&
\begin{array}{l} 
 \text{a-b-c Formel}\\ \hline
      \\
      1x^{2}-1x+0 =0
      \\
      x_{1/2}=\displaystyle\frac{+1 \pm\sqrt{\left(-1\right)^{2}-4\cdot 1 \cdot 0}}{2\cdot1}
      \\
      x_{1/2}=\displaystyle \frac{+1 \pm\sqrt{1}}{2}
      \\
      x_{1/2}=\displaystyle \frac{1 \pm1}{2}
      \\
      x_{1}=\displaystyle \frac{1 +1}{2}  \qquad  x_{2}=\displaystyle  \frac{1 -1}{2}
      \\
      x_{1}=1 \qquad x_{2}=0
    
 \end{array}&
\begin{array}{l} 
 \text{p-q Formel}\\ \hline
      \\
      \\
      x^{2}-1x+0 =0
      \\
      x_{1/2}=\displaystyle -\frac{-1}{2}\pm\sqrt{\left(\frac{\left(-1\right)}{2}\right)^2- 0}
      \\
      x_{1/2}=\displaystyle \frac{1}{2}\pm\sqrt{\frac{1}{4}}
      \\
      x_{1/2}=\displaystyle \frac{1}{2}\pm\frac{1}{2}
      \\
      x_{1}=1 \qquad x_{2}=0
    
 \end{array}\\  \end{array}  \end{array}$