Algebra-Grundlagen-Potenzen
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Beispiel Nr: 11
$\begin{array}{l} {a^{m} \cdot a^{n}=a^{m+n}} \\
\dfrac{a^{m}}{a^{n}}=a^{m-n} \\
a^{n}\cdot b^{n}=({ab})^{n} \\
(a^{n})^{m}=a^{n\cdot m} \\ \\ \textbf{Gegeben:} \\ {a=\frac{1}{5} \qquad b=\frac{1}{2} \qquad m=2 \qquad n=3}\\ \\ \textbf{Rechnung:} \\
{\left(\frac{1}{5}\right)^{2} \cdot \left(\frac{1}{5}\right)^{3}=\left(\frac{1}{5}\right)^{2+3}=\left(\frac{1}{5}\right)^{5}=0,00032}\\
\left(\frac{1}{5}\right)^{2}:\left(\frac{1}{5}\right)^{3}=\dfrac{\left(\frac{1}{5}\right)^{2}}{\left(\frac{1}{5}\right)^{3}}=\left(\frac{1}{5}\right)^{2-3}=\left(\frac{1}{5}\right)^{-1}=5\\
\left(\frac{1}{5}\right)^{3}\cdot \left(\frac{1}{2}\right)^{3}=(\frac{1}{5}\cdot\frac{1}{2})^{3}= \left(\frac{1}{10}\right)^{3}={0,001} \\
(\left(\frac{1}{5}\right)^{3})^{2}=\left(\frac{1}{5}\right)^{3\cdot 2} = \left(\frac{1}{5}\right)^{6}={6,4\cdot 10^{-5}}
\end{array}$