Algebra-Gleichungen-Kubische Gleichungen
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Beispiel Nr: 11
$\begin{array}{l} \text{Gegeben:} ax^{3}+bx^{2}+cx+d=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ \\ \textbf{Gegeben:} \\ \frac{1}{2}x^3-3x^2+5x =0\\ \\ \textbf{Rechnung:} \\ x( \frac{1}{2}x^2-3x+5)=0 \Rightarrow x=0 \quad \vee \quad \frac{1}{2}x^2-3x+5=0\\
\frac{1}{2}x^{2}-3x+5 =0\\
x_{1/2}=\displaystyle\frac{+3 \pm\sqrt{\left(-3\right)^{2}-4 \cdot \frac{1}{2} \cdot 5}}{2\cdot\frac{1}{2}}\\
x_{1/2}=\displaystyle \frac{+3 \pm\sqrt{-1}}{1}\\
\text{Diskriminante negativ keine Lösung}
\\ \underline{x_1=0; \quad1\text{-fache Nullstelle}} \\ \end{array}$