Algebra-Lineares Gleichungssystem-Determinantenverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Beispiel Nr: 11
$\begin{array}{l}
D_h=\begin{array}{|cc|}a1\ & b1 \\ a2&b2 \\ \end{array}=
a1 \cdot b2 -b1 \cdot a2 \\
D_x=\begin{array}{|cc|}c1\ & b1 \\ c2&b2 \\ \end{array}=
c1 \cdot b2 -b1 \cdot c2 \\
D_y=\begin{array}{|cc|}a1\ & c1 \\ a2&c2 \\ \end{array}=
a1 \cdot c2 -c1 \cdot a2\\
x=\frac{D_x}{D_h} \\
y=\frac{D_y}{D_h}
\\ \\ \textbf{Gegeben:} \\
\\
1\frac{1}{5} x -1\frac{1}{3} y =5\frac{1}{3}\\
2\frac{1}{2} x -\frac{1}{4} y = 12\frac{3}{8} \\
\\
\\ \\ \textbf{Rechnung:} \\
D_h=\begin{array}{|cc|}1\frac{1}{5}\ & -1\frac{1}{3} \\ 2\frac{1}{2}&-\frac{1}{4} \\ \end{array}=
1\frac{1}{5} \cdot \left(-\frac{1}{4}\right) -\left(-1\frac{1}{3}\right) \cdot 2\frac{1}{2}=3\frac{1}{30} \\
D_x=\begin{array}{|cc|}5\frac{1}{3}\ & -1\frac{1}{3} \\ 12\frac{3}{8}&-\frac{1}{4} \\ \end{array}=
5\frac{1}{3} \cdot \left(-\frac{1}{4}\right) -\left(-1\frac{1}{3}\right) \cdot 12\frac{3}{8}=15\frac{1}{6} \\
D_y=\begin{array}{|cc|}1\frac{1}{5}\ & 5\frac{1}{3} \\ 2\frac{1}{2}&12\frac{3}{8} \\ \end{array}=
1\frac{1}{5} \cdot 12\frac{3}{8} -5\frac{1}{3} \cdot 2\frac{1}{2}=1\frac{31}{60} \\
\
x=\frac{15\frac{1}{6}}{3\frac{1}{30}} \\
x=5 \\
y=\frac{1\frac{31}{60}}{3\frac{1}{30}} \\
y=\frac{1}{2} \\
L=\{5/\frac{1}{2}\}\\
\,
\end{array}$