Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 11
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
\frac{1}{2}x^2-\frac{2}{3}x =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l|l}
\begin{array}{l}
\text{x-Ausklammern}\\ \hline
\frac{1}{2}x^{2}-\frac{2}{3}x =0 \\
x(\frac{1}{2}x -\frac{2}{3})=0 \\
\\ \frac{1}{2} x-\frac{2}{3} =0 \qquad /+\frac{2}{3} \\
\frac{1}{2} x= \frac{2}{3} \qquad /:\frac{1}{2} \\
x=\displaystyle\frac{\frac{2}{3}}{\frac{1}{2}}\\
x_1=0\\
x_2=1\frac{1}{3}
\end{array}&
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
\frac{1}{2}x^{2}-\frac{2}{3}x+0 =0
\\
x_{1/2}=\displaystyle\frac{+\frac{2}{3} \pm\sqrt{\left(-\frac{2}{3}\right)^{2}-4\cdot \frac{1}{2} \cdot 0}}{2\cdot\frac{1}{2}}
\\
x_{1/2}=\displaystyle \frac{+\frac{2}{3} \pm\sqrt{\frac{4}{9}}}{1}
\\
x_{1/2}=\displaystyle \frac{\frac{2}{3} \pm\frac{2}{3}}{1}
\\
x_{1}=\displaystyle \frac{\frac{2}{3} +\frac{2}{3}}{1} \qquad x_{2}=\displaystyle \frac{\frac{2}{3} -\frac{2}{3}}{1}
\\
x_{1}=1\frac{1}{3} \qquad x_{2}=0
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
\frac{1}{2}x^{2}-\frac{2}{3}x+0 =0 \qquad /:\frac{1}{2}
\\
x^{2}-1\frac{1}{3}x+0 =0
\\
x_{1/2}=\displaystyle -\frac{-1\frac{1}{3}}{2}\pm\sqrt{\left(\frac{\left(-1\frac{1}{3}\right)}{2}\right)^2- 0}
\\
x_{1/2}=\displaystyle \frac{2}{3}\pm\sqrt{\frac{4}{9}}
\\
x_{1/2}=\displaystyle \frac{2}{3}\pm\frac{2}{3}
\\
x_{1}=1\frac{1}{3} \qquad x_{2}=0
\end{array}\\ \end{array} \end{array}$