Algebra-Lineare Algebra-Lineare Gleichungssysteme und Gauß-Algorithmus
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
$n-Gleichungen$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Beispiel Nr: 12
$\begin{array}{l} \text{Gegeben:} \\
a1 \cdot x + b1\cdot y + c1\cdot z=d1\\
a2\cdot x + b2\cdot y + c2\cdot z=d2\\
a3\cdot x + b3\cdot y + c3\cdot z=d3\\
\\ \text{Gesucht:} \\\text{x,y,z}
\\ \\ \textbf{Gegeben:} \\
2 x +3 + 4 z=175\\
4 x +6 y + 5 z=287\\
3 x +2 y + 8 z=257\\
\\ \\ \textbf{Rechnung:} \\\small \begin{array}{l} 2x+3y+4z=175 \\
4x+6y+5z=287 \\
3x+2y+8z=257 \\
\\
\end{array} \qquad
\small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 3 & 4 & 175 \\
4 & 6 & 5 & 287 \\
3 & 2 & 8 & 257 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}2=\text{Zeile}2\text{-Zeile}1\cdot \frac{4}{2}\\z2s1=4-2\cdot \frac{4}{2}=0 \\ z2s2=6-3\cdot \frac{4}{2}=0 \\ z2s3=5-4\cdot \frac{4}{2}=-3 \\ z2s4=287-175\cdot \frac{4}{2}=-63 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 3 & 4 & 175 \\
0 & 0 & -3 & -63 \\
3 & 2 & 8 & 257 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}3=\text{Zeile}3\text{-Zeile}1\cdot \frac{3}{2}\\z3s1=3-2\cdot \frac{3}{2}=0 \\ z3s2=2-3\cdot \frac{3}{2}=-2\frac{1}{2} \\ z3s3=8-4\cdot \frac{3}{2}=2 \\ z3s4=257-175\cdot \frac{3}{2}=-5\frac{1}{2} \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 3 & 4 & 175 \\
0 & 0 & -3 & -63 \\
0 & -2\frac{1}{2} & 2 & -5\frac{1}{2} \\
\end{array} \\ \\
\small \begin{array}{l}\text{Zeilen vertauschen } \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 3 & 4 & 175 \\
0 & -2\frac{1}{2} & 2 & -5\frac{1}{2} \\
0 & 0 & -3 & -63 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}1=\text{Zeile}1\text{-Zeile}2\cdot \frac{3}{-2\frac{1}{2}}\\z1s2=3-(-2\frac{1}{2})\cdot \frac{3}{-2\frac{1}{2}}=0 \\ z1s3=4-2\cdot \frac{3}{-2\frac{1}{2}}=6\frac{2}{5} \\ z1s4=175-(-5\frac{1}{2})\cdot \frac{3}{-2\frac{1}{2}}=168\frac{2}{5} \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 0 & 6\frac{2}{5} & 168\frac{2}{5} \\
0 & -2\frac{1}{2} & 2 & -5\frac{1}{2} \\
0 & 0 & -3 & -63 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}1=\text{Zeile}1\text{-Zeile}3\cdot \frac{6\frac{2}{5}}{-3}\\z1s3=6\frac{2}{5}-(-3)\cdot \frac{6\frac{2}{5}}{-3}=0 \\ z1s4=168\frac{2}{5}-(-63)\cdot \frac{6\frac{2}{5}}{-3}=34 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 0 & 0 & 34 \\
0 & -2\frac{1}{2} & 2 & -5\frac{1}{2} \\
0 & 0 & -3 & -63 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}2=\text{Zeile}2\text{-Zeile}3\cdot \frac{2}{-3}\\z2s3=2-(-3)\cdot \frac{2}{-3}=0 \\ z2s4=-5\frac{1}{2}-(-63)\cdot \frac{2}{-3}=-47\frac{1}{2} \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline2 & 0 & 0 & 34 \\
0 & -2\frac{1}{2} & 0 & -47\frac{1}{2} \\
0 & 0 & -3 & -63 \\
\end{array} \\ \\
x=\frac{34}{2}=17\\y=\frac{-47\frac{1}{2}}{-2\frac{1}{2}}=19\\z=\frac{-63}{-3}=21\\L=\{17/19/21\} \end{array}$