Algebra-Lineares Gleichungssystem-Additionsverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Beispiel Nr: 12
$\begin{array}{l}
\text{Gegeben:} \\
a1 \cdot x +b1 \cdot y =c1\\
a2 \cdot x +b2 \cdot y =c2 \\
\\ \text{Gesucht:} \\\text{x und y}
\\ \\ \textbf{Gegeben:} \\
\\
\frac{2}{3} x -\frac{5}{7} y =\frac{2}{3}\\
1 x +1 y = 10\frac{2}{3} \\
\\
\\ \\ \textbf{Rechnung:} \\\begin{array}{l|l}
\begin{array}{l}
\\I \qquad \frac{2}{3} x -\frac{5}{7} y =\frac{2}{3}\\
II \qquad 1 x +1 y = 10\frac{2}{3} \\
I \qquad \frac{2}{3} x -\frac{5}{7} y =\frac{2}{3} \qquad / \cdot1\\
II \qquad 1 x +1 y = 10\frac{2}{3} \qquad / \cdot\left(-\frac{2}{3}\right)\\
I \qquad \frac{2}{3} x -\frac{5}{7} y =\frac{2}{3}\\
II \qquad -\frac{2}{3} x -\frac{2}{3} y = -7\frac{1}{9} \\
\text{I + II}\\
I \qquad \frac{2}{3} x -\frac{2}{3} x-\frac{5}{7} y -\frac{2}{3} y =\frac{2}{3} -7\frac{1}{9}\\
-1\frac{8}{21} y = -6\frac{4}{9} \qquad /:\left(-1\frac{8}{21}\right) \\
y = \frac{-6\frac{4}{9}}{-1\frac{8}{21}} \\
y=4\frac{2}{3} \\
\text{y in I}\\
I \qquad \frac{2}{3} x -\frac{5}{7}\cdot 4\frac{2}{3} =\frac{2}{3} \\
\frac{2}{3} x -3\frac{1}{3} =\frac{2}{3} \qquad / +3\frac{1}{3} \\
\frac{2}{3} x =\frac{2}{3} +3\frac{1}{3} \\
\frac{2}{3} x =4 \qquad / :\frac{2}{3} \\
x = \frac{4}{\frac{2}{3}} \\
x=6 \\
L=\{6/4\frac{2}{3}\}
\end{array} &
\begin{array}{l}
\\I \qquad \frac{2}{3} x -\frac{5}{7} y =\frac{2}{3}\\
II \qquad 1 x +1 y = 10\frac{2}{3} \\
I \qquad \frac{2}{3} x -\frac{5}{7} y =\frac{2}{3} \qquad / \cdot\left(-1\right)\\
II \qquad 1 x +1 y = 10\frac{2}{3} \qquad / \cdot\left(-\frac{5}{7}\right)\\
I \qquad -\frac{2}{3} x +\frac{5}{7} y =-\frac{2}{3}\\
II \qquad -\frac{5}{7} x -\frac{5}{7} y = -7\frac{13}{21} \\
\text{I + II}\\
I \qquad -\frac{2}{3} x -\frac{5}{7} x+\frac{5}{7} y -\frac{5}{7} y =-\frac{2}{3} -7\frac{13}{21}\\
-1\frac{8}{21} x = -8\frac{2}{7} \qquad /:\left(-1\frac{8}{21}\right) \\
x = \frac{-8\frac{2}{7}}{-1\frac{8}{21}} \\
x=6 \\
\text{x in I}\\
I \qquad \frac{2}{3} \cdot 6 -\frac{5}{7}y =\frac{2}{3} \\
-\frac{5}{7} y +4 =\frac{2}{3} \qquad / -4 \\
-\frac{5}{7} y =\frac{2}{3} -4 \\
-\frac{5}{7} y =-3\frac{1}{3} \qquad / :\left(-\frac{5}{7}\right) \\
y = \frac{-3\frac{1}{3}}{-\frac{5}{7}} \\
y=4\frac{2}{3} \\
L=\{6/4\frac{2}{3}\} \end{array}
\end{array}
\end{array}$