Algebra-Lineares Gleichungssystem-Determinantenverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Beispiel Nr: 12
$\begin{array}{l}
D_h=\begin{array}{|cc|}a1\ & b1 \\ a2&b2 \\ \end{array}=
a1 \cdot b2 -b1 \cdot a2 \\
D_x=\begin{array}{|cc|}c1\ & b1 \\ c2&b2 \\ \end{array}=
c1 \cdot b2 -b1 \cdot c2 \\
D_y=\begin{array}{|cc|}a1\ & c1 \\ a2&c2 \\ \end{array}=
a1 \cdot c2 -c1 \cdot a2\\
x=\frac{D_x}{D_h} \\
y=\frac{D_y}{D_h}
\\ \\ \textbf{Gegeben:} \\
\\
\frac{2}{3} x -\frac{5}{7} y =\frac{2}{3}\\
1 x +1 y = 10\frac{2}{3} \\
\\
\\ \\ \textbf{Rechnung:} \\
D_h=\begin{array}{|cc|}\frac{2}{3}\ & -\frac{5}{7} \\ 1&1 \\ \end{array}=
\frac{2}{3} \cdot 1 -\left(-\frac{5}{7}\right) \cdot 1=1\frac{8}{21} \\
D_x=\begin{array}{|cc|}\frac{2}{3}\ & -\frac{5}{7} \\ 10\frac{2}{3}&1 \\ \end{array}=
\frac{2}{3} \cdot 1 -\left(-\frac{5}{7}\right) \cdot 10\frac{2}{3}=8\frac{2}{7} \\
D_y=\begin{array}{|cc|}\frac{2}{3}\ & \frac{2}{3} \\ 1&10\frac{2}{3} \\ \end{array}=
\frac{2}{3} \cdot 10\frac{2}{3} -\frac{2}{3} \cdot 1=6\frac{4}{9} \\
\
x=\frac{8\frac{2}{7}}{1\frac{8}{21}} \\
x=6 \\
y=\frac{6\frac{4}{9}}{1\frac{8}{21}} \\
y=4\frac{2}{3} \\
L=\{6/4\frac{2}{3}\}\\
\,
\end{array}$