Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 12
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
2x^2-5x =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l|l}
\begin{array}{l}
\text{x-Ausklammern}\\ \hline
2x^{2}-5x =0 \\
x(2x -5)=0 \\
\\ 2 x-5 =0 \qquad /+5 \\
2 x= 5 \qquad /:2 \\
x=\displaystyle\frac{5}{2}\\
x_1=0\\
x_2=2\frac{1}{2}
\end{array}&
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
2x^{2}-5x+0 =0
\\
x_{1/2}=\displaystyle\frac{+5 \pm\sqrt{\left(-5\right)^{2}-4\cdot 2 \cdot 0}}{2\cdot2}
\\
x_{1/2}=\displaystyle \frac{+5 \pm\sqrt{25}}{4}
\\
x_{1/2}=\displaystyle \frac{5 \pm5}{4}
\\
x_{1}=\displaystyle \frac{5 +5}{4} \qquad x_{2}=\displaystyle \frac{5 -5}{4}
\\
x_{1}=2\frac{1}{2} \qquad x_{2}=0
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
2x^{2}-5x+0 =0 \qquad /:2
\\
x^{2}-2\frac{1}{2}x+0 =0
\\
x_{1/2}=\displaystyle -\frac{-2\frac{1}{2}}{2}\pm\sqrt{\left(\frac{\left(-2\frac{1}{2}\right)}{2}\right)^2- 0}
\\
x_{1/2}=\displaystyle 1\frac{1}{4}\pm\sqrt{1\frac{9}{16}}
\\
x_{1/2}=\displaystyle 1\frac{1}{4}\pm1\frac{1}{4}
\\
x_{1}=2\frac{1}{2} \qquad x_{2}=0
\end{array}\\ \end{array} \end{array}$