Algebra-Lineares Gleichungssystem-Additionsverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Beispiel Nr: 13
$\begin{array}{l}
\text{Gegeben:} \\
a1 \cdot x +b1 \cdot y =c1\\
a2 \cdot x +b2 \cdot y =c2 \\
\\ \text{Gesucht:} \\\text{x und y}
\\ \\ \textbf{Gegeben:} \\
\\
1\frac{1}{2} x -2 y =9\\
\frac{2}{5} x +\frac{1}{3} y = 5 \\
\\
\\ \\ \textbf{Rechnung:} \\\begin{array}{l|l}
\begin{array}{l}
\\I \qquad 1\frac{1}{2} x -2 y =9\\
II \qquad \frac{2}{5} x +\frac{1}{3} y = 5 \\
I \qquad 1\frac{1}{2} x -2 y =9 \qquad / \cdot\frac{2}{5}\\
II \qquad \frac{2}{5} x +\frac{1}{3} y = 5 \qquad / \cdot\left(-1\frac{1}{2}\right)\\
I \qquad \frac{3}{5} x -\frac{4}{5} y =3\frac{3}{5}\\
II \qquad -\frac{3}{5} x -\frac{1}{2} y = -7\frac{1}{2} \\
\text{I + II}\\
I \qquad \frac{3}{5} x -\frac{3}{5} x-\frac{4}{5} y -\frac{1}{2} y =3\frac{3}{5} -7\frac{1}{2}\\
-1\frac{3}{10} y = -3\frac{9}{10} \qquad /:\left(-1\frac{3}{10}\right) \\
y = \frac{-3\frac{9}{10}}{-1\frac{3}{10}} \\
y=3 \\
\text{y in I}\\
I \qquad 1\frac{1}{2} x -2\cdot 3 =9 \\
1\frac{1}{2} x -6 =9 \qquad / +6 \\
1\frac{1}{2} x =9 +6 \\
1\frac{1}{2} x =15 \qquad / :1\frac{1}{2} \\
x = \frac{15}{1\frac{1}{2}} \\
x=10 \\
L=\{10/3\}
\end{array} &
\begin{array}{l}
\\I \qquad 1\frac{1}{2} x -2 y =9\\
II \qquad \frac{2}{5} x +\frac{1}{3} y = 5 \\
I \qquad 1\frac{1}{2} x -2 y =9 \qquad / \cdot\left(-\frac{1}{3}\right)\\
II \qquad \frac{2}{5} x +\frac{1}{3} y = 5 \qquad / \cdot\left(-2\right)\\
I \qquad -\frac{1}{2} x +\frac{2}{3} y =-3\\
II \qquad -\frac{4}{5} x -\frac{2}{3} y = -10 \\
\text{I + II}\\
I \qquad -\frac{1}{2} x -\frac{4}{5} x+\frac{2}{3} y -\frac{2}{3} y =-3 -10\\
-1\frac{3}{10} x = -13 \qquad /:\left(-1\frac{3}{10}\right) \\
x = \frac{-13}{-1\frac{3}{10}} \\
x=10 \\
\text{x in I}\\
I \qquad 1\frac{1}{2} \cdot 10 -2y =9 \\
-2 y +15 =9 \qquad / -15 \\
-2 y =9 -15 \\
-2 y =-6 \qquad / :\left(-2\right) \\
y = \frac{-6}{-2} \\
y=3 \\
L=\{10/3\} \end{array}
\end{array}
\end{array}$