Algebra-Lineares Gleichungssystem-Determinantenverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Beispiel Nr: 13
$\begin{array}{l}
D_h=\begin{array}{|cc|}a1\ & b1 \\ a2&b2 \\ \end{array}=
a1 \cdot b2 -b1 \cdot a2 \\
D_x=\begin{array}{|cc|}c1\ & b1 \\ c2&b2 \\ \end{array}=
c1 \cdot b2 -b1 \cdot c2 \\
D_y=\begin{array}{|cc|}a1\ & c1 \\ a2&c2 \\ \end{array}=
a1 \cdot c2 -c1 \cdot a2\\
x=\frac{D_x}{D_h} \\
y=\frac{D_y}{D_h}
\\ \\ \textbf{Gegeben:} \\
\\
1\frac{1}{2} x -2 y =9\\
\frac{2}{5} x +\frac{1}{3} y = 5 \\
\\
\\ \\ \textbf{Rechnung:} \\
D_h=\begin{array}{|cc|}1\frac{1}{2}\ & -2 \\ \frac{2}{5}&\frac{1}{3} \\ \end{array}=
1\frac{1}{2} \cdot \frac{1}{3} -\left(-2\right) \cdot \frac{2}{5}=1\frac{3}{10} \\
D_x=\begin{array}{|cc|}9\ & -2 \\ 5&\frac{1}{3} \\ \end{array}=
9 \cdot \frac{1}{3} -\left(-2\right) \cdot 5=13 \\
D_y=\begin{array}{|cc|}1\frac{1}{2}\ & 9 \\ \frac{2}{5}&5 \\ \end{array}=
1\frac{1}{2} \cdot 5 -9 \cdot \frac{2}{5}=3\frac{9}{10} \\
\
x=\frac{13}{1\frac{3}{10}} \\
x=10 \\
y=\frac{3\frac{9}{10}}{1\frac{3}{10}} \\
y=3 \\
L=\{10/3\}\\
\,
\end{array}$