Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 13
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
x^2+2x-24 =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l}
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
1x^{2}+2x-24 =0
\\
x_{1/2}=\displaystyle\frac{-2 \pm\sqrt{2^{2}-4\cdot 1 \cdot \left(-24\right)}}{2\cdot1}
\\
x_{1/2}=\displaystyle \frac{-2 \pm\sqrt{100}}{2}
\\
x_{1/2}=\displaystyle \frac{-2 \pm10}{2}
\\
x_{1}=\displaystyle \frac{-2 +10}{2} \qquad x_{2}=\displaystyle \frac{-2 -10}{2}
\\
x_{1}=4 \qquad x_{2}=-6
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
\\
x^{2}+2x-24 =0
\\
x_{1/2}=\displaystyle -\frac{2}{2}\pm\sqrt{\left(\frac{2}{2}\right)^2- \left(-24\right)}
\\
x_{1/2}=\displaystyle -1\pm\sqrt{25}
\\
x_{1/2}=\displaystyle -1\pm5
\\
x_{1}=4 \qquad x_{2}=-6
\end{array}\\ \end{array} \end{array}$