Algebra-Gleichungen-Quadratische Gleichung
 $   ax^{2}+bx+c=0  $ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
            
        
                Beispiel Nr: 13
            
        
           $\begin{array}{l}  \text{Gegeben:} ax^{2}+bx+c=0  
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung}    \\
     
    \\    ax^{2}+bx+c=0  \\ \textbf{Gegeben:} \\ 
       x^2+2x-24 =0
    \\ \\ \textbf{Rechnung:} \\
 \begin{array}{l|l|l}
\begin{array}{l} 
 \text{a-b-c Formel}\\ \hline
      \\
      1x^{2}+2x-24 =0
      \\
      x_{1/2}=\displaystyle\frac{-2 \pm\sqrt{2^{2}-4\cdot 1 \cdot \left(-24\right)}}{2\cdot1}
      \\
      x_{1/2}=\displaystyle \frac{-2 \pm\sqrt{100}}{2}
      \\
      x_{1/2}=\displaystyle \frac{-2 \pm10}{2}
      \\
      x_{1}=\displaystyle \frac{-2 +10}{2}  \qquad  x_{2}=\displaystyle  \frac{-2 -10}{2}
      \\
      x_{1}=4 \qquad x_{2}=-6
    
 \end{array}&
\begin{array}{l} 
 \text{p-q Formel}\\ \hline
      \\
      \\
      x^{2}+2x-24 =0
      \\
      x_{1/2}=\displaystyle -\frac{2}{2}\pm\sqrt{\left(\frac{2}{2}\right)^2- \left(-24\right)}
      \\
      x_{1/2}=\displaystyle -1\pm\sqrt{25}
      \\
      x_{1/2}=\displaystyle -1\pm5
      \\
      x_{1}=4 \qquad x_{2}=-6
    
 \end{array}\\  \end{array}  \end{array}$