Algebra-Lineare Algebra-Lineare Gleichungssysteme und Gauß-Algorithmus
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
$n-Gleichungen$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Beispiel Nr: 15
$\begin{array}{l} \text{Gegeben:} \\
a1 \cdot x + b1\cdot y + c1\cdot z=d1\\
a2\cdot x + b2\cdot y + c2\cdot z=d2\\
a3\cdot x + b3\cdot y + c3\cdot z=d3\\
\\ \text{Gesucht:} \\\text{x,y,z}
\\ \\ \textbf{Gegeben:} \\
1 x -2 + 3 z=9\\
3 x +8 y + 9 z=5\\
2 x +3 y + 6 z=7\\
\\ \\ \textbf{Rechnung:} \\\small \begin{array}{l} x-2y+3z=9 \\
3x+8y+9z=5 \\
2x+3y+6z=7 \\
\\
\end{array} \qquad
\small \begin{array}{ccc|cc }
x & y & z & & \\
\hline1 & -2 & 3 & 9 \\
3 & 8 & 9 & 5 \\
2 & 3 & 6 & 7 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}2=\text{Zeile}2\text{-Zeile}1\cdot \frac{3}{1}\\z2s1=3-1\cdot \frac{3}{1}=0 \\ z2s2=8-(-2)\cdot \frac{3}{1}=14 \\ z2s3=9-3\cdot \frac{3}{1}=0 \\ z2s4=5-9\cdot \frac{3}{1}=-22 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline1 & -2 & 3 & 9 \\
0 & 14 & 0 & -22 \\
2 & 3 & 6 & 7 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}3=\text{Zeile}3\text{-Zeile}1\cdot \frac{2}{1}\\z3s1=2-1\cdot \frac{2}{1}=0 \\ z3s2=3-(-2)\cdot \frac{2}{1}=7 \\ z3s3=6-3\cdot \frac{2}{1}=0 \\ z3s4=7-9\cdot \frac{2}{1}=-11 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline1 & -2 & 3 & 9 \\
0 & 14 & 0 & -22 \\
0 & 7 & 0 & -11 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}1=\text{Zeile}1\text{-Zeile}2\cdot \frac{-2}{14}\\z1s2=-2-14\cdot \frac{-2}{14}=0 \\ z1s3=3-0\cdot \frac{-2}{14}=3 \\ z1s4=9-(-22)\cdot \frac{-2}{14}=5\frac{6}{7} \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline1 & 0 & 3 & 5\frac{6}{7} \\
0 & 14 & 0 & -22 \\
0 & 7 & 0 & -11 \\
\end{array} \\ \\
\begin{array}{l}\text{Zeile}3=\text{Zeile}3\text{-Zeile}2\cdot \frac{7}{14}\\z3s2=7-14\cdot \frac{7}{14}=0 \\ z3s3=0-0\cdot \frac{7}{14}=0 \\ z3s4=-11-(-22)\cdot \frac{7}{14}=0 \\ \end{array}\qquad \small \begin{array}{ccc|cc }
x & y & z & & \\
\hline1 & 0 & 3 & 5\frac{6}{7} \\
0 & 14 & 0 & -22 \\
0 & 0 & 0 & 0 \\
\end{array} \\ \\
\\ L= unendlich \end{array}$