Algebra-Gleichungen-Quadratische Gleichung
$ ax^{2}+bx+c=0 $
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Beispiel Nr: 15
$\begin{array}{l} \text{Gegeben:} ax^{2}+bx+c=0
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung} \\
\\ ax^{2}+bx+c=0 \\ \textbf{Gegeben:} \\
x^2-1x =0
\\ \\ \textbf{Rechnung:} \\
\begin{array}{l|l|l|l}
\begin{array}{l}
\text{x-Ausklammern}\\ \hline
1x^{2}-1x =0 \\
x(1x -1)=0 \\
\\ 1 x-1 =0 \qquad /+1 \\
1 x= 1 \qquad /:1 \\
x=\displaystyle\frac{1}{1}\\
x_1=0\\
x_2=1
\end{array}&
\begin{array}{l}
\text{a-b-c Formel}\\ \hline
\\
1x^{2}-1x+0 =0
\\
x_{1/2}=\displaystyle\frac{+1 \pm\sqrt{\left(-1\right)^{2}-4\cdot 1 \cdot 0}}{2\cdot1}
\\
x_{1/2}=\displaystyle \frac{+1 \pm\sqrt{1}}{2}
\\
x_{1/2}=\displaystyle \frac{1 \pm1}{2}
\\
x_{1}=\displaystyle \frac{1 +1}{2} \qquad x_{2}=\displaystyle \frac{1 -1}{2}
\\
x_{1}=1 \qquad x_{2}=0
\end{array}&
\begin{array}{l}
\text{p-q Formel}\\ \hline
\\
\\
x^{2}-1x+0 =0
\\
x_{1/2}=\displaystyle -\frac{-1}{2}\pm\sqrt{\left(\frac{\left(-1\right)}{2}\right)^2- 0}
\\
x_{1/2}=\displaystyle \frac{1}{2}\pm\sqrt{\frac{1}{4}}
\\
x_{1/2}=\displaystyle \frac{1}{2}\pm\frac{1}{2}
\\
x_{1}=1 \qquad x_{2}=0
\end{array}\\ \end{array} \end{array}$