Algebra-Gleichungen-Quadratische Gleichung
 $   ax^{2}+bx+c=0  $ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
            
        
                Beispiel Nr: 18
            
        
           $\begin{array}{l}  \text{Gegeben:} ax^{2}+bx+c=0  
\\ \text{Gesucht:} \\ \text{Lösung der Gleichung}    \\
     
    \\    ax^{2}+bx+c=0  \\ \textbf{Gegeben:} \\ 
      -\frac{1}{3}x^2-2x+3 =0
    \\ \\ \textbf{Rechnung:} \\
 \begin{array}{l|l|l}
\begin{array}{l} 
 \text{a-b-c Formel}\\ \hline
      \\
      -\frac{1}{3}x^{2}-2x+3 =0
      \\
      x_{1/2}=\displaystyle\frac{+2 \pm\sqrt{\left(-2\right)^{2}-4\cdot \left(-\frac{1}{3}\right) \cdot 3}}{2\cdot\left(-\frac{1}{3}\right)}
      \\
      x_{1/2}=\displaystyle \frac{+2 \pm\sqrt{8}}{-\frac{2}{3}}
      \\
      x_{1/2}=\displaystyle \frac{2 \pm2,83}{-\frac{2}{3}}
      \\
      x_{1}=\displaystyle \frac{2 +2,83}{-\frac{2}{3}}  \qquad  x_{2}=\displaystyle  \frac{2 -2,83}{-\frac{2}{3}}
      \\
      x_{1}=-7,24 \qquad x_{2}=1,24
    
 \end{array}&
\begin{array}{l} 
 \text{p-q Formel}\\ \hline
      \\
      -\frac{1}{3}x^{2}-2x+3 =0   \qquad /:-\frac{1}{3}
      \\
      x^{2}+6x-9 =0
      \\
      x_{1/2}=\displaystyle -\frac{6}{2}\pm\sqrt{\left(\frac{6}{2}\right)^2- \left(-9\right)}
      \\
      x_{1/2}=\displaystyle -3\pm\sqrt{18}
      \\
      x_{1/2}=\displaystyle -3\pm4,24
      \\
      x_{1}=1,24 \qquad x_{2}=-7,24
    
 \end{array}\\  \end{array}  \end{array}$