Algebra-Lineares Gleichungssystem-Determinantenverfahren (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Beispiel Nr: 20
$\begin{array}{l}
D_h=\begin{array}{|cc|}a1\ & b1 \\ a2&b2 \\ \end{array}=
a1 \cdot b2 -b1 \cdot a2 \\
D_x=\begin{array}{|cc|}c1\ & b1 \\ c2&b2 \\ \end{array}=
c1 \cdot b2 -b1 \cdot c2 \\
D_y=\begin{array}{|cc|}a1\ & c1 \\ a2&c2 \\ \end{array}=
a1 \cdot c2 -c1 \cdot a2\\
x=\frac{D_x}{D_h} \\
y=\frac{D_y}{D_h}
\\ \\ \textbf{Gegeben:} \\
\\
-1\frac{4}{5} x +1\frac{1}{3} y =-1\\
-\frac{2}{3} x +\frac{1}{9} y = 9 \\
\\
\\ \\ \textbf{Rechnung:} \\
D_h=\begin{array}{|cc|}-1\frac{4}{5}\ & 1\frac{1}{3} \\ -\frac{2}{3}&\frac{1}{9} \\ \end{array}=
-1\frac{4}{5} \cdot \frac{1}{9} -1\frac{1}{3} \cdot \left(-\frac{2}{3}\right)=\frac{31}{45} \\
D_x=\begin{array}{|cc|}-1\ & 1\frac{1}{3} \\ 9&\frac{1}{9} \\ \end{array}=
-1 \cdot \frac{1}{9} -1\frac{1}{3} \cdot 9=-12\frac{1}{9} \\
D_y=\begin{array}{|cc|}-1\frac{4}{5}\ & -1 \\ -\frac{2}{3}&9 \\ \end{array}=
-1\frac{4}{5} \cdot 9 -\left(-1\right) \cdot \left(-\frac{2}{3}\right)=-16\frac{13}{15} \\
\
x=\frac{-12\frac{1}{9}}{\frac{31}{45}} \\
x=-17\frac{18}{31} \\
y=\frac{-16\frac{13}{15}}{\frac{31}{45}} \\
y=-24\frac{15}{31} \\
L=\{-17\frac{18}{31}/-24\frac{15}{31}\}\\
\,
\end{array}$